\bn{A}\times\bn{B}\times C \times\bn{D} + \bn{A}\times B \times C \times\bn{D} +
A \times\bn{B}\times\bn{C}\times\bn{D} + A \times\bn{B}\times\bn{C}\times D +
A \times\bn{B}\times C \times\bn{D} + A \times B \times C \times D +
\bn{A}\times\bn{B}\times\bn{C}\times D + \bn{A}\times B \times C \times D =$
\paragraph{apply the distributive law:}
$\bn{A}\times(\bn{B}\times\bn{C}\times\bn{D}+\bn{B}\times C \times\bn{D}+
B \times C \times\bn{D} + \bn{B}\times\bn{C}\times D + B \times C \times D) +
A \times (\bn{B}\times\bn{C}\times\bn{D} + \bn{B}\times\bn{C}\times D +
\bn{B}\times C \times\bn{D} + B \times C \times D) =$
\paragraph{apply it again:}
$\bn{A}\times(\bn{B}\times(\bn{C}\times\bn{D}+ C \times\bn{D}+\bn{C}\times D)
+ B \times C \times (\bn{D} + D)) + A \times (\bn{B}\times (\bn{C}\times\bn{D} + \bn{C}\times D +
C \times\bn{D}) + B \times C \times D) = $
\subsubsection{\label{sec:cd}Solving $\bn{C}\times\bn{D}+ C \times\bn{D}+\bn{C}\times D$}
\paragraph{Apply the distributive law:}
$\bn{C}\times(\bn{D}+ D)+ C \times\bn{D}=$i
\paragraph{then apply the inverse law:}
$\bn{C}\times1+ C \times\bn{D}=$
\paragraph{then apply the identity law:}
$\bn{C}+ C \times\bn{D}=$
\paragraph{then apply De Morgan's law:}
$\bn{C \times\bn{C \times\bn{D}}}=$
\paragraph{then apply it again:}
$\bn{C \times(\bn{C}+ D)}=$
\paragraph{then apply the distributive law:}
$\bn{C \times\bn{C}+ C \times D}=$
\paragraph{then apply the inverse law:}
$\bn{0+ C \times D}=$
\paragraph{then, finally, apply the identity law, obtaining:}
$\bn{C \times D}$
\subsubsection{Back to the main function}
\paragraph{by \ref{sec:cd} and the inverse law, we continue this way:}
$\bn{A}\times(\bn{B}\times\bn{C \times D}+ B \times C \times1)+
A \times (\bn{B}\times\bn{C \times D}) + B \times C \times D) =$
\paragraph{then apply the identity law:}
$\bn{A}\times(\bn{B}\times\bn{C \times D}+ B \times C)+
A \times (\bn{B}\times\bn{C \times D}) + B \times C \times D) =$
\paragraph{then apply the distributive law:}
$\bn{A}\times\bn{B}\times\bn{C \times D})+\bn{A}\times B \times C +
A \times\bn{B}\times\bn{C \times D} + A \times B \times C \times D =$
\paragraph{then apply it again:}
$\bn{B}\times\bn{C \times D}\times(\bn{A}+ A)+ B \times C \times(\bn{A}+ A \times D)=$
\paragraph{then apply the inverse law:}
$\bn{B}\times\bn{C \times D}\times1+ B \times C \times(\bn{A}+ A \times D)=$
\paragraph{then apply the identity law:}
$\bn{B}\times\bn{C \times D}+ B \times C \times(\bn{A}+ A \times D)=$
\paragraph{then apply De Morgan's law:}
$\bn{B}\times\bn{C \times D}+ B \times C \times\bn{A \times\bn{A \times D}}=$
\paragraph{then apply it again:}
$\bn{B}\times\bn{C \times D}+ B \times C \times\bn{A \times(\bn{A}+\bn{D})}=$
\paragraph{then apply the distributive law:}
$\bn{B}\times\bn{C \times D}+ B \times C \times\bn{A \times\bn{A}+ A \times\bn{D}}=$
\paragraph{then apply the inverse law:}
$\bn{B}\times\bn{C \times D}+ B \times C \times\bn{0+ A \times\bn{D}}=$
\paragraph{then apply the identity law:}
$\bn{B}\times\bn{C \times D}+ B \times C \times\bn{A \times\bn{D}}=$
\paragraph{then, finally, apply De Morgan's law, we find the result:}
$\bn{B}\times\bn{C \times D}+ B \times C \times(\bn{A}+ D)$
\subsection{Sub-question 2}
Using the minterm normal form given in section \ref{sec:11}, we can deduct the truth table of the function. Using that, we can find the following Karnaugh map and the following prime implicants:
\begin{figure}[h]
\centering{
\begin{karnaugh-map}[4][4][1][AB][CD]
\maxterms{1,3,5,7,11,12,14}
\minterms{0,2,4,6,8,9,10,13,15}
\implicant{1}{7}
\implicantedge{12}{12}{14}{14}
\implicantedge{3}{3}{11}{11}
\end{karnaugh-map}
}
\end{figure}
Using those prime implicants we find the boolean function $(\bn{B}+ C)\times(\bn{A}+\bn{B}