Computer Architecture – Assignment 11 Bonus

Claudio Maggioni Tommaso Rodolfo Masera

1 Bonus Question 1

1.1 Decimal to Hexadecimal

All the numbers are going to be first converted to binary and then to hexadecimal for an easier calculation

a) **11**;

First we find how 11 is expressed in binary which is 1011 and then we convert it to scientific base 2 notation: $1011 = 1.011 \times 2^3$.

The sign bit is 0 since 11 > 0 and therefore the number is positive.

To determine the exponent we take the single precision bias (127) and we add to it the amount of times we moved a bit past the floating point: 127 + 3 = 130.

We then convert 130 to decimal by successive halving: **Fraction** | **Rest**

130/2 = 65	0
65/2 = 32	1
32/2 = 16	0
16/2 = 8	0
8/2 = 4	0
4/2 = 2	0
2/2 = 1	0
1/2 = 0	1

By reading from most significant bit to least significant bit we get 10000010 for our exponent.

We then finally assemble the floating point binary number with the parts we have converted:

And we convert to hexadecimal by splitting the number in 4 bit groups and converting each group to its equivalent hexadecimal digit:

 $0100\ 0001\ 0011\ 0000\ 0000\ 0000\ 0000\ = 4\ 1\ 3\ 0\ 0\ 0\ 0\ = 41300000.$

From now on the passages are going to include only the calculations to avoid verbosity. Nonetheless, the same reasoning will be applied for each conversion.

b) **5/64**;

Sign bit = 0 $\frac{5}{64} = 0.078125$ Conversion to binary:

- $-0.078125 \times 2 = \mathbf{0} + 0.15625;$
- $0.15625 \times 2 = \mathbf{0} + 0.3125;$
- $0.3125 \times 2 = \mathbf{0} + 0.625;$
- $-\ 0.625 \times 2 = \mathbf{1} + 0.25;$
- $-0.25 \times 2 = \mathbf{0} + 0.5;$
- $-0.5 \times 2 = 1 + 0;$

Result of conversion: 0.000101.

Normalization to scientific notation: 1.01×2^{-4} . Exponent bits in decimal = 127 - 4 = 123

Conversion of exponent: Fraction Best		
123/2 = 61	1	
61/2 = 30	1	
30/2 = 15	0	
15/2 = 7	1	
7/2 = 3	1	
3/2 = 1	1	
1/2 = 0	1	

Exponent bits in binary = 01111011

Conversion to hexadecimal:

c) **-5/64**;

With this being the negative counterpart of the previous number we just need to flip the sign bit of $\frac{5}{64}$.

Which, converted to hexadecimal, gives:

d) 6.125;

Sign bit = 0

Conversion to binary:

Integer part $= 6_{10} = 110_2$

Fractional part = 0.125_{10} :

$$-\ 0.125 \times 2 = \mathbf{0} + 0.25;$$

$$-0.25 \times 2 = \mathbf{0} + 0.5;$$

 $-0.5 \times 2 = 1 + 0;$

 $= 001_2.$

Normalized binary = $110.001 = 1.10001 \times 2^2$

Exponent bits in decimal = 127 + 2 = 129.

Fraction	Rest
129/2 = 64	1
64/2 = 32	0
32/2 = 16	0
16/2 = 8	0
8/2 = 4	0
4/2 = 2	0
2/2 = 1	0
1/2 = 0	1

Exponent bits in binary = 10000001

Conversion to hexadecimal: $0100\ 0000\ 1100\ 0100\ 0000\ 0000\ 0000\ 0000 = 4\ 0\ C\ 4\ 0\ 0\ 0\ 0 = 40C40000.$

1.2 Hexadecimal to Decimal

All the numbers are going to be first converted to binary and then to decimal for an easier calculation

a) $42E48000_{16}$

Conversion to binary:

 $42\mathrm{E}48000 = 0100\ 0010\ 1110\ 0100\ 1000\ 0000\ 0000\ =$

 $0 \ 10000101 \ 110010010000000000000 =$

From this we can observe that the sign bit is 0 (i.e. positive).

Conversion of exponent from binary to decimal:

 $10000101 = 2^7 + 2^2 + 2^0 = 128 + 4 + 1 = 133$

To find how many bits have been moved beyond the floating point we now find the exponent for our notation:

133 - 127 = 6

And we then take the mantissa to multiply it by 2^6 (where 6 is the number we found through the last passage) to get the final binary number to convert to decimal:

 $1.11001001000000000000 \times 2^6 = 1.11001001 \times 2^6 = 1110010.01$

Conversion to decimal:

 $1110010.01 = 2^6 + 2^5 + 2^4 + 2 + 2^{-2} = 64 + 32 + 16 + 2 + 0.25 = 114.25$

b) $3F880000_{16}$

Conversion to binary:

 $3F880000 = 0011 \ 1111 \ 1000 \ 1000 \ 0000 \ 0000 \ 0000 \ =$

Sign bit = 0

Conversion of exponent from binary to decimal:

 $01111111 = 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2 + 1 = 64 + 32 + 16 + 8 + 4 + 2 + 1 = 127$

Power of 2 = 127 - 127 = 0

Final binary number:

 $1.0001 \times 2^0 = 1.0001$

Conversion to decimal:

 $1.0001 = 2^0 + 2^{-4} = 1 + 0.0625 = 1.0625$

c) 0080000_{16}

Conversion of exponent from binary to decimal: $0000001 = 2^0 = 1$ Power of 2 = 1 - 127 = -126Final binary number: $1.00000000000000000 \times 2^{-126}$ Conversion to decimal: $1.000000000000000000 \times 2^{-126} = 2^{-126} = 1.1754944 \times 10^{-38}$

d) $C7F00000_{16}$

Conversion to binary:

 ${\rm C7F00000} = 1100\ 0111\ 1111\ 0000\ 0000\ 0000\ 0000\ 0000 =$

Sign bit = 1

Conversion of exponent from binary to decimal:

 $10001111 = 2^7 + 2^3 + 2^2 + 2^1 + 2^0 = 128 + 8 + 4 + 2 + 1 = 143$

Power of 2 = 143 - 127 = 16

Final binary number:

 $1.11100000000000000000 \times 2^{16} = 1.111 \times 2^{16} =$

1111000000000000.0

Conversion to decimal:

 $1111000000000000.0 = 2^{1}6 + 2^{1}5 + 2^{1}4 + 2^{1}3 = 65536 + 32768 + 16384 + 8192 = 122880$ and, since the sign bit is 1 (i.e. negative), = -122880.

2 Bonus Question 2