local search

This commit is contained in:
UmbertoJr 2019-11-18 06:58:07 +01:00
parent b094d8190c
commit 32ca4e97fa

View file

@ -5,7 +5,6 @@ else:
from AI2019.src.utils import * from AI2019.src.utils import *
class TwoOpt: class TwoOpt:
@staticmethod @staticmethod
@ -67,3 +66,84 @@ class TwoOpt:
return new_tsp_sequence.tolist(), new_len, uncross return new_tsp_sequence.tolist(), new_len, uncross
class TwoDotFiveOpt:
@staticmethod
def step2dot5opt(solution, matrix_dist, distance):
"""
One step of 2opt, one double loop and return first improved sequence
@param tsp_sequence:
@param matrix_dist:
@param distance:
@return:
"""
seq_length = len(solution) - 2
tsp_sequence = np.array(solution)
uncrosses = 0
for i in range(1, seq_length - 1):
for j in range(i + 1, seq_length):
# 2opt swap
twoOpt_tsp_sequence = TwoOpt.swap2opt(tsp_sequence, i, j)
twoOpt_len = distance + TwoOpt.gain(i, j , tsp_sequence, matrix_dist)
# node shift 1
first_shift_tsp_sequence = TwoDotFiveOpt.shift1(tsp_sequence, i,j)
first_shift_len = distance + TwoDotFiveOpt.shift_gain1(i,j, tsp_sequence, matrix_dist)
# node shift 2
second_shift_tsp_sequence = TwoDotFiveOpt.shift2(tsp_sequence, i,j)
second_shift_len = distance + TwoDotFiveOpt.shift_gain2(i,j, tsp_sequence, matrix_dist)
best_len, best_method = min([twoOpt_len, first_shift_len, second_shift_len]), np.argmin([twoOpt_len, first_shift_len, second_shift_len])
sequences = [twoOpt_tsp_sequence, first_shift_tsp_sequence, second_shift_tsp_sequence]
if best_len < distance:
uncrosses += 1
tsp_sequence = sequences[best_method]
distance = best_len
# print(distance, best_method, [twoOpt_len, first_shift_len, second_shift_len])
return tsp_sequence, distance, uncrosses
@staticmethod
def shift1(tsp_sequence, i, j):
new_tsp_sequence = np.concatenate([tsp_sequence[:i], tsp_sequence[i+1: j+1], [tsp_sequence[i]], tsp_sequence[j+1:]])
return new_tsp_sequence
@staticmethod
def shift_gain1(i, j , tsp_sequence, matrix_dist):
old_link_len = (matrix_dist[tsp_sequence[i], tsp_sequence[i - 1]]+ matrix_dist[tsp_sequence[i], tsp_sequence[i + 1]] + matrix_dist[tsp_sequence[j], tsp_sequence[j + 1]])
changed_links_len = (matrix_dist[tsp_sequence[i - 1], tsp_sequence[i + 1]] + matrix_dist[tsp_sequence[i], tsp_sequence[j]] + matrix_dist[tsp_sequence[i], tsp_sequence[j + 1]])
return - old_link_len + changed_links_len
@staticmethod
def shift2(tsp_sequence, i, j):
new_tsp_sequence = np.concatenate([tsp_sequence[:i], [tsp_sequence[j]], tsp_sequence[i: j], tsp_sequence[j+1:]])
return new_tsp_sequence
@staticmethod
def shift_gain2(i, j , tsp_sequence, matrix_dist):
old_link_len = (matrix_dist[tsp_sequence[i], tsp_sequence[i - 1]] + matrix_dist[tsp_sequence[j], tsp_sequence[j - 1]] + matrix_dist[tsp_sequence[j], tsp_sequence[j + 1]])
changed_links_len = (matrix_dist[tsp_sequence[j], tsp_sequence[i - 1]] + matrix_dist[tsp_sequence[i], tsp_sequence[j]] + matrix_dist[tsp_sequence[j - 1], tsp_sequence[j + 1]])
return - old_link_len + changed_links_len
@staticmethod
def loop2dot5opt(solution, instance, max_num_of_changes=400): # Iterate stoep2opt max_iter times (2-opt local search)
"""
@param tsp_sequence:
@param instance:
@param max_num_of_changes:
@return:
"""
matrix_dist = instance.dist_matrix
actual_len = compute_lenght(solution, matrix_dist)
new_tsp_sequence = np.copy(np.array(solution))
uncross = 0
while uncross < max_num_of_changes:
new_tsp_sequence, new_len, uncr_ = TwoDotFiveOpt.step2dot5opt(new_tsp_sequence, matrix_dist, actual_len)
uncross += uncr_
# print(new_len, uncross)
if new_len < actual_len:
actual_len = new_len
else:
return new_tsp_sequence.tolist(), actual_len, uncross
return new_tsp_sequence.tolist(), actual_len, uncross