local search
This commit is contained in:
parent
35b51416c1
commit
b094d8190c
1 changed files with 69 additions and 0 deletions
69
src/local_search.py
Normal file
69
src/local_search.py
Normal file
|
@ -0,0 +1,69 @@
|
||||||
|
import os
|
||||||
|
if 'AI' in os.getcwd():
|
||||||
|
from src.utils import *
|
||||||
|
else:
|
||||||
|
from AI2019.src.utils import *
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class TwoOpt:
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def step2opt(solution, matrix_dist, distance):
|
||||||
|
"""
|
||||||
|
One step of 2opt, one double loop and return first improved sequence
|
||||||
|
@param tsp_sequence:
|
||||||
|
@param matrix_dist:
|
||||||
|
@param distance:
|
||||||
|
@return:
|
||||||
|
"""
|
||||||
|
seq_length = len(solution) - 1
|
||||||
|
tsp_sequence = np.array(solution)
|
||||||
|
uncrosses = 0
|
||||||
|
for i in range(1, seq_length - 1):
|
||||||
|
for j in range(i + 1, seq_length):
|
||||||
|
new_tsp_sequence = TwoOpt.swap2opt(tsp_sequence, i, j)
|
||||||
|
new_distance = distance + TwoOpt.gain(i, j, tsp_sequence, matrix_dist)
|
||||||
|
if new_distance < distance:
|
||||||
|
uncrosses += 1
|
||||||
|
tsp_sequence = np.copy(new_tsp_sequence)
|
||||||
|
distance = new_distance
|
||||||
|
return tsp_sequence, distance, uncrosses
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def swap2opt(tsp_sequence, i, j):
|
||||||
|
new_tsp_sequence = np.copy(tsp_sequence)
|
||||||
|
new_tsp_sequence[i:j + 1] = np.flip(tsp_sequence[i:j + 1], axis=0) # flip or swap ?
|
||||||
|
return new_tsp_sequence
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def gain(i, j, tsp_sequence, matrix_dist):
|
||||||
|
old_link_len = (matrix_dist[tsp_sequence[i], tsp_sequence[i - 1]] + matrix_dist[
|
||||||
|
tsp_sequence[j], tsp_sequence[j + 1]])
|
||||||
|
changed_links_len = (matrix_dist[tsp_sequence[j], tsp_sequence[i - 1]] + matrix_dist[
|
||||||
|
tsp_sequence[i], tsp_sequence[j + 1]])
|
||||||
|
return - old_link_len + changed_links_len
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def loop2opt(solution, instance, max_num_of_uncrosses=400): # Iterate step2opt max_iter times (2-opt local search)
|
||||||
|
"""
|
||||||
|
|
||||||
|
@param tsp_sequence:
|
||||||
|
@param instance:
|
||||||
|
@param max_num_of_uncrosses:
|
||||||
|
@return:
|
||||||
|
"""
|
||||||
|
matrix_dist = instance.dist_matrix
|
||||||
|
new_len = compute_lenght(solution, matrix_dist)
|
||||||
|
new_tsp_sequence = np.copy(np.array(solution))
|
||||||
|
uncross = 0
|
||||||
|
while uncross < max_num_of_uncrosses:
|
||||||
|
new_tsp_sequence, new_reward, uncr_ = TwoOpt.step2opt(new_tsp_sequence, matrix_dist, new_len)
|
||||||
|
uncross += uncr_
|
||||||
|
if new_reward < new_len:
|
||||||
|
new_len = new_reward
|
||||||
|
else:
|
||||||
|
return new_tsp_sequence.tolist(), new_len, uncross
|
||||||
|
|
||||||
|
return new_tsp_sequence.tolist(), new_len, uncross
|
||||||
|
|
Reference in a new issue