constructive algorithms

This commit is contained in:
UmbertoJr 2019-11-18 07:01:13 +01:00
parent dad6b9bca5
commit d69cc63677
2 changed files with 138 additions and 132 deletions

View file

@ -0,0 +1,138 @@
import os
if 'AI' in os.getcwd():
from src.utils import *
else:
from AI2019.src.utils import *
class random_initialier:
@staticmethod
def random_method(instance_):
n = int(instance_.nPoints)
solution = np.random.choice(np.arange(n), size=n, replace=False)
return np.concatenate([solution, [solution[0]]])
class nearest_neighbor:
@staticmethod
def nn(instance_, starting_node=0):
dist_matrix = np.copy(instance_.dist_matrix)
n = int(instance_.nPoints)
node = starting_node
tour = [node]
for _ in range(n - 1):
for new_node in np.argsort(dist_matrix[node]):
if new_node not in tour:
tour.append(new_node)
node = new_node
break
tour.append(starting_node)
return np.array(tour)
@staticmethod
def best_nn(self, instance_):
solutions, lens = [], []
for start in range(self.instance.nPoints):
new_solution = self.nn(instance_, starting_node=start)
solutions.append(new_solution)
assert self.check_if_solution_is_valid(new_solution), "error on best_nn method"
lens.append(self.evaluate_solution(return_value=True))
self.solution = solutions[np.argmin(lens)]
self.solved = True
return self.solution
class multi_fragment:
@staticmethod
def check_if_available(n1, n2, sol):
if len(sol[str(n1)]) < 2 and len(sol[str(n2)]) < 2:
return True
else:
return False
@staticmethod
def check_if_not_close(edge_to_append, sol):
n1, n2 = edge_to_append
from_city = n2
if len(sol[str(from_city)]) == 0:
return True
partial_tour = [from_city]
end = False
iterazione = 0
while not end:
if len(sol[str(from_city)]) == 1:
if from_city == n1:
return_value = False
end = True
elif iterazione > 1:
# print(f"iterazione {iterazione}, elementi dentro partial {len(partial_tour)}",
# f"from city {from_city}")
return_value = True
end = True
else:
from_city = sol[str(from_city)][0]
partial_tour.append(from_city)
iterazione += 1
else:
# print(from_city, partial_tour, sol[str(from_city)])
for node_connected in sol[str(from_city)]:
# print(node_connected)
if node_connected not in partial_tour:
from_city = node_connected
partial_tour.append(node_connected)
# print(node_connected, sol[str(from_city)])
iterazione += 1
return return_value
@staticmethod
def create_solution(start_sol, sol):
assert len(start_sol) == 2, "too many cities with just one link"
end = False
n1, n2 = start_sol
from_city = n2
sol_list = [n1, n2]
iterazione = 0
while not end:
for node_connected in sol[str(from_city)]:
iterazione += 1
if node_connected not in sol_list:
from_city = node_connected
sol_list.append(node_connected)
# print(f"prossimo {node_connected}",
# f"possibili {sol[str(from_city)]}",
# f"ultim tour {sol_list[-5:]}")
if iterazione > 300:
end = True
sol_list.append(n1)
return sol_list
@staticmethod
def mf(instance):
mat = np.copy(instance.dist_matrix)
mat = np.triu(mat)
mat[mat == 0] = 100000
solution = {str(i): [] for i in range(instance.nPoints)}
start_list = [i for i in range(instance.nPoints)]
inside = 0
for el in np.argsort(mat.flatten()):
node1, node2 = el // instance.nPoints, el % instance.nPoints
possible_edge = [node1, node2]
if multi_fragment.check_if_available(node1, node2, solution):
if multi_fragment.check_if_not_close(possible_edge, solution):
# print("entrato", inside)
solution[str(node1)].append(node2)
solution[str(node2)].append(node1)
if len(solution[str(node1)]) == 2:
start_list.remove(node1)
if len(solution[str(node2)]) == 2:
start_list.remove(node2)
inside += 1
# print(node1, node2, inside)
if inside == instance.nPoints - 1:
# print(f"ricostruire la solutione da {start_list}",
# f"vicini di questi due nodi {[solution[str(i)] for i in start_list]}")
solution = multi_fragment.create_solution(start_list, solution)
return solution

View file

@ -9,135 +9,3 @@ def compute_lenght(solution, dist_matrix):
from_node = node
return total_length
class random_initialier:
@staticmethod
def random_method(instance_):
n = int(instance_.nPoints)
solution = np.random.choice(np.arange(n), size=n, replace=False)
return np.concatenate([solution, [solution[0]]])
class nearest_neighbor:
@staticmethod
def nn(instance_, starting_node=0):
dist_matrix = np.copy(instance_.dist_matrix)
n = int(instance_.nPoints)
node = starting_node
tour = [node]
for _ in range(n - 1):
for new_node in np.argsort(dist_matrix[node]):
if new_node not in tour:
tour.append(new_node)
node = new_node
break
tour.append(starting_node)
return np.array(tour)
@staticmethod
def best_nn(self, instance_):
solutions, lens = [], []
for start in range(self.instance.nPoints):
new_solution = self.nn(instance_, starting_node=start)
solutions.append(new_solution)
assert self.check_if_solution_is_valid(new_solution), "error on best_nn method"
lens.append(self.evaluate_solution(return_value=True))
self.solution = solutions[np.argmin(lens)]
self.solved = True
return self.solution
class multi_fragment:
@staticmethod
def check_if_available(n1, n2, sol):
if len(sol[str(n1)]) < 2 and len(sol[str(n2)]) < 2:
return True
else:
return False
@staticmethod
def check_if_not_close(edge_to_append, sol):
n1, n2 = edge_to_append
from_city = n2
if len(sol[str(from_city)]) == 0:
return True
partial_tour = [from_city]
end = False
iterazione = 0
while not end:
if len(sol[str(from_city)]) == 1:
if from_city == n1:
return_value = False
end = True
elif iterazione > 1:
# print(f"iterazione {iterazione}, elementi dentro partial {len(partial_tour)}",
# f"from city {from_city}")
return_value = True
end = True
else:
from_city = sol[str(from_city)][0]
partial_tour.append(from_city)
iterazione += 1
else:
# print(from_city, partial_tour, sol[str(from_city)])
for node_connected in sol[str(from_city)]:
# print(node_connected)
if node_connected not in partial_tour:
from_city = node_connected
partial_tour.append(node_connected)
# print(node_connected, sol[str(from_city)])
iterazione += 1
return return_value
@staticmethod
def create_solution(start_sol, sol):
assert len(start_sol) == 2, "too many cities with just one link"
end = False
n1, n2 = start_sol
from_city = n2
sol_list = [n1, n2]
iterazione = 0
while not end:
for node_connected in sol[str(from_city)]:
iterazione += 1
if node_connected not in sol_list:
from_city = node_connected
sol_list.append(node_connected)
# print(f"prossimo {node_connected}",
# f"possibili {sol[str(from_city)]}",
# f"ultim tour {sol_list[-5:]}")
if iterazione > 300:
end = True
sol_list.append(n1)
return sol_list
@staticmethod
def mf(instance):
mat = np.copy(instance.dist_matrix)
mat = np.triu(mat)
mat[mat == 0] = 100000
solution = {str(i): [] for i in range(instance.nPoints)}
start_list = [i for i in range(instance.nPoints)]
inside = 0
for el in np.argsort(mat.flatten()):
node1, node2 = el // instance.nPoints, el % instance.nPoints
possible_edge = [node1, node2]
if multi_fragment.check_if_available(node1, node2, solution):
if multi_fragment.check_if_not_close(possible_edge, solution):
# print("entrato", inside)
solution[str(node1)].append(node2)
solution[str(node2)].append(node1)
if len(solution[str(node1)]) == 2:
start_list.remove(node1)
if len(solution[str(node2)]) == 2:
start_list.remove(node2)
inside += 1
# print(node1, node2, inside)
if inside == instance.nPoints - 1:
# print(f"ricostruire la solutione da {start_list}",
# f"vicini di questi due nodi {[solution[str(i)] for i in start_list]}")
solution = multi_fragment.create_solution(start_list, solution)
return solution