constructive algorithms
This commit is contained in:
parent
dad6b9bca5
commit
d69cc63677
2 changed files with 138 additions and 132 deletions
138
src/constructive_algorithms.py
Normal file
138
src/constructive_algorithms.py
Normal file
|
@ -0,0 +1,138 @@
|
|||
import os
|
||||
if 'AI' in os.getcwd():
|
||||
from src.utils import *
|
||||
else:
|
||||
from AI2019.src.utils import *
|
||||
|
||||
|
||||
class random_initialier:
|
||||
@staticmethod
|
||||
def random_method(instance_):
|
||||
n = int(instance_.nPoints)
|
||||
solution = np.random.choice(np.arange(n), size=n, replace=False)
|
||||
return np.concatenate([solution, [solution[0]]])
|
||||
|
||||
|
||||
class nearest_neighbor:
|
||||
@staticmethod
|
||||
def nn(instance_, starting_node=0):
|
||||
dist_matrix = np.copy(instance_.dist_matrix)
|
||||
n = int(instance_.nPoints)
|
||||
node = starting_node
|
||||
tour = [node]
|
||||
for _ in range(n - 1):
|
||||
for new_node in np.argsort(dist_matrix[node]):
|
||||
if new_node not in tour:
|
||||
tour.append(new_node)
|
||||
node = new_node
|
||||
break
|
||||
tour.append(starting_node)
|
||||
return np.array(tour)
|
||||
|
||||
@staticmethod
|
||||
def best_nn(self, instance_):
|
||||
solutions, lens = [], []
|
||||
for start in range(self.instance.nPoints):
|
||||
new_solution = self.nn(instance_, starting_node=start)
|
||||
solutions.append(new_solution)
|
||||
assert self.check_if_solution_is_valid(new_solution), "error on best_nn method"
|
||||
lens.append(self.evaluate_solution(return_value=True))
|
||||
|
||||
self.solution = solutions[np.argmin(lens)]
|
||||
self.solved = True
|
||||
return self.solution
|
||||
|
||||
|
||||
class multi_fragment:
|
||||
|
||||
@staticmethod
|
||||
def check_if_available(n1, n2, sol):
|
||||
if len(sol[str(n1)]) < 2 and len(sol[str(n2)]) < 2:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def check_if_not_close(edge_to_append, sol):
|
||||
n1, n2 = edge_to_append
|
||||
from_city = n2
|
||||
if len(sol[str(from_city)]) == 0:
|
||||
return True
|
||||
partial_tour = [from_city]
|
||||
end = False
|
||||
iterazione = 0
|
||||
while not end:
|
||||
if len(sol[str(from_city)]) == 1:
|
||||
if from_city == n1:
|
||||
return_value = False
|
||||
end = True
|
||||
elif iterazione > 1:
|
||||
# print(f"iterazione {iterazione}, elementi dentro partial {len(partial_tour)}",
|
||||
# f"from city {from_city}")
|
||||
return_value = True
|
||||
end = True
|
||||
else:
|
||||
from_city = sol[str(from_city)][0]
|
||||
partial_tour.append(from_city)
|
||||
iterazione += 1
|
||||
else:
|
||||
# print(from_city, partial_tour, sol[str(from_city)])
|
||||
for node_connected in sol[str(from_city)]:
|
||||
# print(node_connected)
|
||||
if node_connected not in partial_tour:
|
||||
from_city = node_connected
|
||||
partial_tour.append(node_connected)
|
||||
# print(node_connected, sol[str(from_city)])
|
||||
iterazione += 1
|
||||
return return_value
|
||||
|
||||
@staticmethod
|
||||
def create_solution(start_sol, sol):
|
||||
assert len(start_sol) == 2, "too many cities with just one link"
|
||||
end = False
|
||||
n1, n2 = start_sol
|
||||
from_city = n2
|
||||
sol_list = [n1, n2]
|
||||
iterazione = 0
|
||||
while not end:
|
||||
for node_connected in sol[str(from_city)]:
|
||||
iterazione += 1
|
||||
if node_connected not in sol_list:
|
||||
from_city = node_connected
|
||||
sol_list.append(node_connected)
|
||||
# print(f"prossimo {node_connected}",
|
||||
# f"possibili {sol[str(from_city)]}",
|
||||
# f"ultim tour {sol_list[-5:]}")
|
||||
if iterazione > 300:
|
||||
end = True
|
||||
sol_list.append(n1)
|
||||
return sol_list
|
||||
|
||||
@staticmethod
|
||||
def mf(instance):
|
||||
mat = np.copy(instance.dist_matrix)
|
||||
mat = np.triu(mat)
|
||||
mat[mat == 0] = 100000
|
||||
solution = {str(i): [] for i in range(instance.nPoints)}
|
||||
start_list = [i for i in range(instance.nPoints)]
|
||||
inside = 0
|
||||
for el in np.argsort(mat.flatten()):
|
||||
node1, node2 = el // instance.nPoints, el % instance.nPoints
|
||||
possible_edge = [node1, node2]
|
||||
if multi_fragment.check_if_available(node1, node2, solution):
|
||||
if multi_fragment.check_if_not_close(possible_edge, solution):
|
||||
# print("entrato", inside)
|
||||
solution[str(node1)].append(node2)
|
||||
solution[str(node2)].append(node1)
|
||||
if len(solution[str(node1)]) == 2:
|
||||
start_list.remove(node1)
|
||||
if len(solution[str(node2)]) == 2:
|
||||
start_list.remove(node2)
|
||||
inside += 1
|
||||
# print(node1, node2, inside)
|
||||
if inside == instance.nPoints - 1:
|
||||
# print(f"ricostruire la solutione da {start_list}",
|
||||
# f"vicini di questi due nodi {[solution[str(i)] for i in start_list]}")
|
||||
solution = multi_fragment.create_solution(start_list, solution)
|
||||
return solution
|
||||
|
132
src/utils.py
132
src/utils.py
|
@ -9,135 +9,3 @@ def compute_lenght(solution, dist_matrix):
|
|||
from_node = node
|
||||
return total_length
|
||||
|
||||
|
||||
class random_initialier:
|
||||
@staticmethod
|
||||
def random_method(instance_):
|
||||
n = int(instance_.nPoints)
|
||||
solution = np.random.choice(np.arange(n), size=n, replace=False)
|
||||
return np.concatenate([solution, [solution[0]]])
|
||||
|
||||
|
||||
class nearest_neighbor:
|
||||
@staticmethod
|
||||
def nn(instance_, starting_node=0):
|
||||
dist_matrix = np.copy(instance_.dist_matrix)
|
||||
n = int(instance_.nPoints)
|
||||
node = starting_node
|
||||
tour = [node]
|
||||
for _ in range(n - 1):
|
||||
for new_node in np.argsort(dist_matrix[node]):
|
||||
if new_node not in tour:
|
||||
tour.append(new_node)
|
||||
node = new_node
|
||||
break
|
||||
tour.append(starting_node)
|
||||
return np.array(tour)
|
||||
|
||||
@staticmethod
|
||||
def best_nn(self, instance_):
|
||||
solutions, lens = [], []
|
||||
for start in range(self.instance.nPoints):
|
||||
new_solution = self.nn(instance_, starting_node=start)
|
||||
solutions.append(new_solution)
|
||||
assert self.check_if_solution_is_valid(new_solution), "error on best_nn method"
|
||||
lens.append(self.evaluate_solution(return_value=True))
|
||||
|
||||
self.solution = solutions[np.argmin(lens)]
|
||||
self.solved = True
|
||||
return self.solution
|
||||
|
||||
|
||||
class multi_fragment:
|
||||
|
||||
@staticmethod
|
||||
def check_if_available(n1, n2, sol):
|
||||
if len(sol[str(n1)]) < 2 and len(sol[str(n2)]) < 2:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def check_if_not_close(edge_to_append, sol):
|
||||
n1, n2 = edge_to_append
|
||||
from_city = n2
|
||||
if len(sol[str(from_city)]) == 0:
|
||||
return True
|
||||
partial_tour = [from_city]
|
||||
end = False
|
||||
iterazione = 0
|
||||
while not end:
|
||||
if len(sol[str(from_city)]) == 1:
|
||||
if from_city == n1:
|
||||
return_value = False
|
||||
end = True
|
||||
elif iterazione > 1:
|
||||
# print(f"iterazione {iterazione}, elementi dentro partial {len(partial_tour)}",
|
||||
# f"from city {from_city}")
|
||||
return_value = True
|
||||
end = True
|
||||
else:
|
||||
from_city = sol[str(from_city)][0]
|
||||
partial_tour.append(from_city)
|
||||
iterazione += 1
|
||||
else:
|
||||
# print(from_city, partial_tour, sol[str(from_city)])
|
||||
for node_connected in sol[str(from_city)]:
|
||||
# print(node_connected)
|
||||
if node_connected not in partial_tour:
|
||||
from_city = node_connected
|
||||
partial_tour.append(node_connected)
|
||||
# print(node_connected, sol[str(from_city)])
|
||||
iterazione += 1
|
||||
return return_value
|
||||
|
||||
@staticmethod
|
||||
def create_solution(start_sol, sol):
|
||||
assert len(start_sol) == 2, "too many cities with just one link"
|
||||
end = False
|
||||
n1, n2 = start_sol
|
||||
from_city = n2
|
||||
sol_list = [n1, n2]
|
||||
iterazione = 0
|
||||
while not end:
|
||||
for node_connected in sol[str(from_city)]:
|
||||
iterazione += 1
|
||||
if node_connected not in sol_list:
|
||||
from_city = node_connected
|
||||
sol_list.append(node_connected)
|
||||
# print(f"prossimo {node_connected}",
|
||||
# f"possibili {sol[str(from_city)]}",
|
||||
# f"ultim tour {sol_list[-5:]}")
|
||||
if iterazione > 300:
|
||||
end = True
|
||||
sol_list.append(n1)
|
||||
return sol_list
|
||||
|
||||
@staticmethod
|
||||
def mf(instance):
|
||||
mat = np.copy(instance.dist_matrix)
|
||||
mat = np.triu(mat)
|
||||
mat[mat == 0] = 100000
|
||||
solution = {str(i): [] for i in range(instance.nPoints)}
|
||||
start_list = [i for i in range(instance.nPoints)]
|
||||
inside = 0
|
||||
for el in np.argsort(mat.flatten()):
|
||||
node1, node2 = el // instance.nPoints, el % instance.nPoints
|
||||
possible_edge = [node1, node2]
|
||||
if multi_fragment.check_if_available(node1, node2, solution):
|
||||
if multi_fragment.check_if_not_close(possible_edge, solution):
|
||||
# print("entrato", inside)
|
||||
solution[str(node1)].append(node2)
|
||||
solution[str(node2)].append(node1)
|
||||
if len(solution[str(node1)]) == 2:
|
||||
start_list.remove(node1)
|
||||
if len(solution[str(node2)]) == 2:
|
||||
start_list.remove(node2)
|
||||
inside += 1
|
||||
# print(node1, node2, inside)
|
||||
if inside == instance.nPoints - 1:
|
||||
# print(f"ricostruire la solutione da {start_list}",
|
||||
# f"vicini di questi due nodi {[solution[str(i)] for i in start_list]}")
|
||||
solution = multi_fragment.create_solution(start_list, solution)
|
||||
return solution
|
||||
|
||||
|
|
Reference in a new issue