This commit is contained in:
UmbertoJr 2019-11-18 07:12:00 +01:00
parent c2aaa9e5f7
commit f5b513f75c

View file

@ -3,24 +3,26 @@ from matplotlib import pyplot as plt
from numpy.core._multiarray_umath import ndarray
import os
if 'AI' in os.getcwd():
from src.utils import *
from src import *
else:
from AI2019.src.utils import *
from AI2019.src import *
class Solver_TSP:
solution: ndarray
found_length: float
available_methods = {"random": lambda x: x, "nearest_neighbors": lambda x: x,
"best_nn": lambda x: x, "multi_fragment": lambda x: x}
available_initializers = {"random": random_initialier.random_method,
"nearest_neighbors": nearest_neighbor.nn,
"best_nn": nearest_neighbor.best_nn,
"multi_fragment": multi_fragment.mf}
def __init__(self, method):
self.available_methods = {"random": self.random_method, "nearest_neighbors": self.nn,
"best_nn": self.best_nn, "multi_fragment": self.mf}
# self.available_methods = {"random": self.random_method, "nearest_neighbors": self.nn,
# "best_nn": self.best_nn, "multi_fragment": self.mf}
self.method = method
self.solved = False
assert method in self.available_methods, f"the {method} method is not available currently."
assert method in self.available_initializers, f"the {method} method is not available currently."
def __call__(self, instance_, verbose=True, return_value=True):
self.instance = instance_
@ -37,69 +39,69 @@ class Solver_TSP:
if return_value:
return self.solution
def random_method(self, instance_):
n = int(instance_.nPoints)
solution = np.random.choice(np.arange(n), size=n, replace=False)
self.solution = np.concatenate([solution, [solution[0]]])
self.solved = True
return self.solution
def nn(self, instance_, starting_node=0):
dist_matrix = np.copy(instance_.dist_matrix)
n = int(instance_.nPoints)
node = starting_node
tour = [node]
for _ in range(n - 1):
for new_node in np.argsort(dist_matrix[node]):
if new_node not in tour:
tour.append(new_node)
node = new_node
break
tour.append(starting_node)
self.solution = np.array(tour)
self.solved = True
return self.solution
def best_nn(self, instance_):
solutions, lens = [], []
for start in range(self.instance.nPoints):
new_solution = self.nn(instance_, starting_node=start)
solutions.append(new_solution)
assert self.check_if_solution_is_valid(new_solution), "error on best_nn method"
lens.append(self.evaluate_solution(return_value=True))
self.solution = solutions[np.argmin(lens)]
self.solved = True
return self.solution
def mf(self, instance):
mat = np.copy(instance.dist_matrix)
mat = np.triu(mat)
mat[mat == 0] = 100000
solution = {str(i): [] for i in range(instance.nPoints)}
start_list = [i for i in range(instance.nPoints)]
inside = 0
for el in np.argsort(mat.flatten()):
node1, node2 = el // instance.nPoints, el % instance.nPoints
possible_edge = [node1, node2]
if multi_fragment.check_if_available(node1, node2, solution):
if multi_fragment.check_if_not_close(possible_edge, solution):
# print("entrato", inside)
solution[str(node1)].append(node2)
solution[str(node2)].append(node1)
if len(solution[str(node1)]) == 2:
start_list.remove(node1)
if len(solution[str(node2)]) == 2:
start_list.remove(node2)
inside += 1
# print(node1, node2, inside)
if inside == instance.nPoints - 1:
# print(f"ricostruire la solutione da {start_list}",
# f"vicini di questi due nodi {[solution[str(i)] for i in start_list]}")
solution = multi_fragment.create_solution(start_list, solution)
self.solution = solution
self.solved = True
return self.solution
# def random_method(self, instance_):
# n = int(instance_.nPoints)
# solution = np.random.choice(np.arange(n), size=n, replace=False)
# self.solution = np.concatenate([solution, [solution[0]]])
# self.solved = True
# return self.solution
#
# def nn(self, instance_, starting_node=0):
# dist_matrix = np.copy(instance_.dist_matrix)
# n = int(instance_.nPoints)
# node = starting_node
# tour = [node]
# for _ in range(n - 1):
# for new_node in np.argsort(dist_matrix[node]):
# if new_node not in tour:
# tour.append(new_node)
# node = new_node
# break
# tour.append(starting_node)
# self.solution = np.array(tour)
# self.solved = True
# return self.solution
#
# def best_nn(self, instance_):
# solutions, lens = [], []
# for start in range(self.instance.nPoints):
# new_solution = self.nn(instance_, starting_node=start)
# solutions.append(new_solution)
# assert self.check_if_solution_is_valid(new_solution), "error on best_nn method"
# lens.append(self.evaluate_solution(return_value=True))
#
# self.solution = solutions[np.argmin(lens)]
# self.solved = True
# return self.solution
#
# def mf(self, instance):
# mat = np.copy(instance.dist_matrix)
# mat = np.triu(mat)
# mat[mat == 0] = 100000
# solution = {str(i): [] for i in range(instance.nPoints)}
# start_list = [i for i in range(instance.nPoints)]
# inside = 0
# for el in np.argsort(mat.flatten()):
# node1, node2 = el // instance.nPoints, el % instance.nPoints
# possible_edge = [node1, node2]
# if multi_fragment.check_if_available(node1, node2, solution):
# if multi_fragment.check_if_not_close(possible_edge, solution):
# # print("entrato", inside)
# solution[str(node1)].append(node2)
# solution[str(node2)].append(node1)
# if len(solution[str(node1)]) == 2:
# start_list.remove(node1)
# if len(solution[str(node2)]) == 2:
# start_list.remove(node2)
# inside += 1
# # print(node1, node2, inside)
# if inside == instance.nPoints - 1:
# # print(f"ricostruire la solutione da {start_list}",
# # f"vicini di questi due nodi {[solution[str(i)] for i in start_list]}")
# solution = multi_fragment.create_solution(start_list, solution)
# self.solution = solution
# self.solved = True
# return self.solution
def plot_solution(self):
assert self.solved, "You can't plot the solution, you need to solve it first!"