This commit is contained in:
UmbertoJr 2019-11-18 07:12:00 +01:00
parent c2aaa9e5f7
commit f5b513f75c

View file

@ -3,24 +3,26 @@ from matplotlib import pyplot as plt
from numpy.core._multiarray_umath import ndarray from numpy.core._multiarray_umath import ndarray
import os import os
if 'AI' in os.getcwd(): if 'AI' in os.getcwd():
from src.utils import * from src import *
else: else:
from AI2019.src.utils import * from AI2019.src import *
class Solver_TSP: class Solver_TSP:
solution: ndarray solution: ndarray
found_length: float found_length: float
available_methods = {"random": lambda x: x, "nearest_neighbors": lambda x: x, available_initializers = {"random": random_initialier.random_method,
"best_nn": lambda x: x, "multi_fragment": lambda x: x} "nearest_neighbors": nearest_neighbor.nn,
"best_nn": nearest_neighbor.best_nn,
"multi_fragment": multi_fragment.mf}
def __init__(self, method): def __init__(self, method):
self.available_methods = {"random": self.random_method, "nearest_neighbors": self.nn, # self.available_methods = {"random": self.random_method, "nearest_neighbors": self.nn,
"best_nn": self.best_nn, "multi_fragment": self.mf} # "best_nn": self.best_nn, "multi_fragment": self.mf}
self.method = method self.method = method
self.solved = False self.solved = False
assert method in self.available_methods, f"the {method} method is not available currently." assert method in self.available_initializers, f"the {method} method is not available currently."
def __call__(self, instance_, verbose=True, return_value=True): def __call__(self, instance_, verbose=True, return_value=True):
self.instance = instance_ self.instance = instance_
@ -37,69 +39,69 @@ class Solver_TSP:
if return_value: if return_value:
return self.solution return self.solution
def random_method(self, instance_): # def random_method(self, instance_):
n = int(instance_.nPoints) # n = int(instance_.nPoints)
solution = np.random.choice(np.arange(n), size=n, replace=False) # solution = np.random.choice(np.arange(n), size=n, replace=False)
self.solution = np.concatenate([solution, [solution[0]]]) # self.solution = np.concatenate([solution, [solution[0]]])
self.solved = True # self.solved = True
return self.solution # return self.solution
#
def nn(self, instance_, starting_node=0): # def nn(self, instance_, starting_node=0):
dist_matrix = np.copy(instance_.dist_matrix) # dist_matrix = np.copy(instance_.dist_matrix)
n = int(instance_.nPoints) # n = int(instance_.nPoints)
node = starting_node # node = starting_node
tour = [node] # tour = [node]
for _ in range(n - 1): # for _ in range(n - 1):
for new_node in np.argsort(dist_matrix[node]): # for new_node in np.argsort(dist_matrix[node]):
if new_node not in tour: # if new_node not in tour:
tour.append(new_node) # tour.append(new_node)
node = new_node # node = new_node
break # break
tour.append(starting_node) # tour.append(starting_node)
self.solution = np.array(tour) # self.solution = np.array(tour)
self.solved = True # self.solved = True
return self.solution # return self.solution
#
def best_nn(self, instance_): # def best_nn(self, instance_):
solutions, lens = [], [] # solutions, lens = [], []
for start in range(self.instance.nPoints): # for start in range(self.instance.nPoints):
new_solution = self.nn(instance_, starting_node=start) # new_solution = self.nn(instance_, starting_node=start)
solutions.append(new_solution) # solutions.append(new_solution)
assert self.check_if_solution_is_valid(new_solution), "error on best_nn method" # assert self.check_if_solution_is_valid(new_solution), "error on best_nn method"
lens.append(self.evaluate_solution(return_value=True)) # lens.append(self.evaluate_solution(return_value=True))
#
self.solution = solutions[np.argmin(lens)] # self.solution = solutions[np.argmin(lens)]
self.solved = True # self.solved = True
return self.solution # return self.solution
#
def mf(self, instance): # def mf(self, instance):
mat = np.copy(instance.dist_matrix) # mat = np.copy(instance.dist_matrix)
mat = np.triu(mat) # mat = np.triu(mat)
mat[mat == 0] = 100000 # mat[mat == 0] = 100000
solution = {str(i): [] for i in range(instance.nPoints)} # solution = {str(i): [] for i in range(instance.nPoints)}
start_list = [i for i in range(instance.nPoints)] # start_list = [i for i in range(instance.nPoints)]
inside = 0 # inside = 0
for el in np.argsort(mat.flatten()): # for el in np.argsort(mat.flatten()):
node1, node2 = el // instance.nPoints, el % instance.nPoints # node1, node2 = el // instance.nPoints, el % instance.nPoints
possible_edge = [node1, node2] # possible_edge = [node1, node2]
if multi_fragment.check_if_available(node1, node2, solution): # if multi_fragment.check_if_available(node1, node2, solution):
if multi_fragment.check_if_not_close(possible_edge, solution): # if multi_fragment.check_if_not_close(possible_edge, solution):
# print("entrato", inside) # # print("entrato", inside)
solution[str(node1)].append(node2) # solution[str(node1)].append(node2)
solution[str(node2)].append(node1) # solution[str(node2)].append(node1)
if len(solution[str(node1)]) == 2: # if len(solution[str(node1)]) == 2:
start_list.remove(node1) # start_list.remove(node1)
if len(solution[str(node2)]) == 2: # if len(solution[str(node2)]) == 2:
start_list.remove(node2) # start_list.remove(node2)
inside += 1 # inside += 1
# print(node1, node2, inside) # # print(node1, node2, inside)
if inside == instance.nPoints - 1: # if inside == instance.nPoints - 1:
# print(f"ricostruire la solutione da {start_list}", # # print(f"ricostruire la solutione da {start_list}",
# f"vicini di questi due nodi {[solution[str(i)] for i in start_list]}") # # f"vicini di questi due nodi {[solution[str(i)] for i in start_list]}")
solution = multi_fragment.create_solution(start_list, solution) # solution = multi_fragment.create_solution(start_list, solution)
self.solution = solution # self.solution = solution
self.solved = True # self.solved = True
return self.solution # return self.solution
def plot_solution(self): def plot_solution(self):
assert self.solved, "You can't plot the solution, you need to solve it first!" assert self.solved, "You can't plot the solution, you need to solve it first!"