from time import time as t import numpy as np import matplotlib.pyplot as plt from src.two_opt import loop2opt from src.two_dot_five_opt import loop2dot5opt from src.simulated_annealing import sa from src.constructive_algorithms import random_method, nearest_neighbor, best_nearest_neighbor, multi_fragment_mf from src.ant_colony import ant_colony_opt # available_solvers = {"random": random_method, # "nearest_neighbors": nearest_neighbor, # "best_nn": best_nearest_neighbor, # "multi_fragment": multi_fragment_mf # } available_improvers = {"2-opt": loop2opt, "2.5-opt": loop2dot5opt, "simulated_annealing": sa} # available_solvers = {} # for i in range(1, 10): # for j in range(1, 10): # available_solvers["aco_" + str(i) + "_" + str(j)] = ant_colony_opt(i/10, j) available_solvers = {"aco": ant_colony_opt} class TSPSolver: def __init__(self, algorithm_name, problem_instance, passed_avail_solvers=None, passed_avail_improvers=None): # assert algorithm_name in available_solvers, f"the {algorithm_name} initializer is not available currently." if passed_avail_improvers is None: passed_avail_improvers = available_improvers if passed_avail_solvers is None: passed_avail_solvers = available_solvers self.available_improvers = passed_avail_improvers self.available_solvers = passed_avail_solvers self.duration = np.inf self.found_length = np.inf self.algorithm_name = algorithm_name self.algorithms = [algorithm_name] self.name_method = "initialized with " + algorithm_name self.solved = False self.problem_instance = problem_instance self.solution = None def bind(self, local_or_meta): assert local_or_meta in self.available_improvers, f"the {local_or_meta} method is not available currently." self.algorithms.append(local_or_meta) self.name_method += ", improved with " + local_or_meta def pop(self): self.algorithms.pop() self.name_method = self.name_method[::-1][self.name_method[::-1].find("improved"[::-1]) + len("improved") + 2:][ ::-1] def compute_solution(self, verbose=True, return_value=True): self.solved = False if verbose: print(f"### solving with {self.algorithms} ####") start_time = t() self.solution = self.available_solvers[self.algorithms[0]](self.problem_instance) if not self.check_if_solution_is_valid(): print(f"Error the solution of {self.algorithm_name} for problem {self.problem_instance.name} is not valid") if return_value: return False for i in range(1, len(self.algorithms)): improver = self.algorithms[i] self.solution = self.available_improvers[improver](self.solution, self.problem_instance) if not self.check_if_solution_is_valid(): print( f"Error the solution of {self.algorithm_name} with {improver} for problem {self.problem_instance.name} is not valid") if return_value: return False end_time = t() self.duration = np.around(end_time - start_time, 3) self.solved = True self.evaluate_solution() self._gap() if return_value: return self.solution def plot_solution(self): assert self.solved, "You can't plot the solution, you need to compute it first!" plt.figure(figsize=(8, 8)) self._gap() plt.title(f"{self.problem_instance.name} solved with {self.name_method} solver, gap {self.gap}") ordered_points = self.problem_instance.points[self.solution] plt.plot(ordered_points[:, 1], ordered_points[:, 2], 'b-') plt.show() def check_if_solution_is_valid(self): rights_values = np.sum( [self.check_validation(i, self.solution[:-1]) for i in np.arange(self.problem_instance.nPoints)]) # rights_values = np.sum( # [1 if np.sum(self.solution[:-1] == i) == 1 else 0 for i in np.arange(self.problem_instance.nPoints)]) return rights_values == self.problem_instance.nPoints def check_validation(self, node, solution): if np.sum(solution == node) == 1: return 1 else: return 0 def evaluate_solution(self, return_value=False): total_length = 0 starting_node = self.solution[0] from_node = starting_node for node in self.solution[1:]: total_length += self.problem_instance.dist_matrix[from_node, node] from_node = node self.found_length = total_length if return_value: return total_length def pass_and_check_if_solution_is_valid(self, solution): rights_values = np.sum( [self.check_validation(i, solution[:-1]) for i in np.arange(self.problem_instance.nPoints)]) # rights_values = np.sum( # [1 if np.sum(solution[:-1] == i) == 1 else 0 for i in np.arange(self.problem_instance.nPoints)]) return rights_values == self.problem_instance.nPoints def _gap(self): self.evaluate_solution(return_value=False) self.gap = np.round( ((self.found_length - self.problem_instance.best_sol) / self.problem_instance.best_sol) * 100, 2)