import numpy as np from matplotlib import pyplot as plt from numpy.core._multiarray_umath import ndarray from src.utils import * class Solver_TSP: solution: ndarray found_length: float available_methods = {"random": lambda x: x, "nearest_neighbors": lambda x: x, "best_nn": lambda x: x, "multi_fragment": lambda x: x} def __init__(self, method): self.available_methods = {"random": self.random_method, "nearest_neighbors": self.nn, "best_nn": self.best_nn, "multi_fragment": self.mf} self.method = method self.solved = False assert method in self.available_methods, f"the {method} method is not available currently." def __call__(self, instance_, verbose=True, return_value=True): self.instance = instance_ self.solved = False if verbose: print(f"### solving with {self.method} ####") self.solution = self.available_methods[self.method](instance_) assert self.check_if_solution_is_valid(self.solution), "Error the solution is not valid" self.evaluate_solution() self._gap() if verbose: print(f"### solution found with {self.gap} % gap ####") self._gap() if return_value: return self.solution def random_method(self, instance_): n = int(instance_.nPoints) solution = np.random.choice(np.arange(n), size=n, replace=False) self.solution = np.concatenate([solution, [solution[0]]]) self.solved = True return self.solution def nn(self, instance_, starting_node=0): dist_matrix = np.copy(instance_.dist_matrix) n = int(instance_.nPoints) node = starting_node tour = [node] for _ in range(n - 1): for new_node in np.argsort(dist_matrix[node]): if new_node not in tour: tour.append(new_node) node = new_node break tour.append(starting_node) self.solution = np.array(tour) self.solved = True return self.solution def best_nn(self, instance_): solutions, lens = [], [] for start in range(self.instance.nPoints): new_solution = self.nn(instance_, starting_node=start) solutions.append(new_solution) assert self.check_if_solution_is_valid(new_solution), "error on best_nn method" lens.append(self.evaluate_solution(return_value=True)) self.solution = solutions[np.argmin(lens)] self.solved = True return self.solution def mf(self, instance): mat = np.copy(instance.dist_matrix) mat = np.triu(mat) mat[mat == 0] = 100000 solution = {str(i): [] for i in range(instance.nPoints)} start_list = [i for i in range(instance.nPoints)] inside = 0 for el in np.argsort(mat.flatten()): node1, node2 = el // instance.nPoints, el % instance.nPoints possible_edge = [node1, node2] if multi_fragment.check_if_available(node1, node2, solution): if multi_fragment.check_if_not_close(possible_edge, solution): # print("entrato", inside) solution[str(node1)].append(node2) solution[str(node2)].append(node1) if len(solution[str(node1)]) == 2: start_list.remove(node1) if len(solution[str(node2)]) == 2: start_list.remove(node2) inside += 1 # print(node1, node2, inside) if inside == instance.nPoints - 1: # print(f"ricostruire la solutione da {start_list}", # f"vicini di questi due nodi {[solution[str(i)] for i in start_list]}") solution = multi_fragment.create_solution(start_list, solution) self.solution = solution self.solved = True return self.solution def plot_solution(self): assert self.solved, "You can't plot the solution, you need to solve it first!" plt.figure(figsize=(8, 8)) self._gap() plt.title(f"{self.instance.name} solved with {self.method} solver, gap {self.gap}") ordered_points = self.instance.points[self.solution] plt.plot(ordered_points[:, 1], ordered_points[:, 2], 'b-') plt.show() def check_if_solution_is_valid(self, solution): rights_values = np.sum([self.check_validation(i, solution[:-1]) for i in np.arange(self.instance.nPoints)]) if rights_values == self.instance.nPoints: return True else: return False def check_validation(self, node, solution): if np.sum(solution == node) == 1: return 1 else: return 0 def evaluate_solution(self, return_value=False): total_length = 0 starting_node = self.solution[0] from_node = starting_node for node in self.solution[1:]: total_length += self.instance.dist_matrix[from_node, node] from_node = node self.found_length = total_length if return_value: return total_length def _gap(self): self.evaluate_solution(return_value=False) self.gap = np.round(((self.found_length - self.instance.best_sol) / self.instance.best_sol) * 100, 2)