import numpy as np from matplotlib import pyplot as plt from src.utils import distance_euc class ProblemInstance: def __init__(self, name_tsp): self.exist_opt = False self.optimal_tour = None self.dist_matrix = None # read raw data file_object = open(name_tsp) data = file_object.read() file_object.close() self.lines = data.splitlines() # store data set information self.name = self.lines[0].split(' ')[2] self.nPoints = np.int(self.lines[3].split(' ')[2]) self.best_sol = np.float(self.lines[5].split(' ')[2]) # read all data points and store them self.points = np.zeros((self.nPoints, 3)) for i in range(self.nPoints): line_i = self.lines[7 + i].split(' ') self.points[i, 0] = int(line_i[0]) self.points[i, 1] = line_i[1] self.points[i, 2] = line_i[2] self.create_dist_matrix() if name_tsp in ["./problems/eil76.tsp", "./problems/kroA100.tsp"]: self.exist_opt = True file_object = open(name_tsp.replace(".tsp", ".opt.tour")) data = file_object.read() file_object.close() lines = data.splitlines() # read all data points and store them self.optimal_tour = np.zeros(self.nPoints, dtype=np.int) for i in range(self.nPoints): line_i = lines[5 + i].split(' ') self.optimal_tour[i] = int(line_i[0]) - 1 def print_info(self): print("\n\n#############################") print('name: ' + self.name) print('nPoints: ' + str(self.nPoints)) print('best_sol: ' + str(self.best_sol)) print('exist optimal: ' + str(self.exist_opt)) def plot_data(self,show_numbers=False): plt.figure(figsize=(8, 8)) plt.title(self.name) plt.scatter(self.points[:, 1], self.points[:, 2]) if show_numbers: for i, txt in enumerate(np.arange(self.nPoints)): # tour_found[:-1] plt.annotate(txt, (self.points[i, 1], self.points[i, 2])) plt.show() def create_dist_matrix(self): self.dist_matrix = np.zeros((self.nPoints, self.nPoints)) for i in range(self.nPoints): for j in range(i, self.nPoints): self.dist_matrix[i, j] = distance_euc(self.points[i][1:3], self.points[j][1:3]) self.dist_matrix += self.dist_matrix.T