import numpy as np from matplotlib import pyplot as plt from numpy.core._multiarray_umath import ndarray class Solver_TSP: solution: ndarray found_length: float def __init__(self, method): self.available_methods = {"random": self.random_method, "nearest_neighbors": self.nn} self.method = method self.solved = False assert method in self.available_methods, f"the {method} method is not available currently." def __call__(self, instance_, verbose=True, return_value=True): self.instance = instance_ if verbose: print(f"### solving with {self.method} ####") self.solution = self.available_methods[self.method](instance_) assert self.check_if_solution_is_valid(self.solution), "Error the solution is not valid" self.evaluate_solution() self._gap() if verbose: print(f"### solution found with {self.gap} % gap ####") self._gap() if return_value: return self.solution def random_method(self, instance_): n = int(instance_.nPoints) solution = np.random.choice(np.arange(n), size=n, replace=False) self.solution = np.concatenate([solution, [solution[0]]]) self.solved = True return self.solution def nn(self, instance_, starting_node=0): dist_matrix = np.copy(instance_.dist_matrix) n = int(instance_.nPoints) node = np.argmin([starting_node]) tour = [node] for _ in range(n - 2): for node in np.argsort(dist_matrix[node]): if node not in tour: tour.append(node) tour.append(starting_node) self.solution = np.array(tour) self.solved = True return self.solution def plot_solution(self): assert self.solved, "You can't plot the solution, you need to solve it first!" plt.figure(figsize=(8, 8)) plt.title(f"{self.instance.name} with gap {self.gap}") ordered_points = self.instance.points[self.solution] plt.plot(ordered_points[:, 1], ordered_points[:, 2], 'b-') plt.show() def check_if_solution_is_valid(self, solution): rights_values = np.sum([self.check_validation(i, solution[:-1]) for i in np.arange(self.instance.nPoints)]) if rights_values == self.instance.nPoints: return True else: return False def check_validation(self, node, solution): if np.sum(solution == node) == 1: return 1 else: return 0 def evaluate_solution(self, return_value=False): total_length = 0 starting_node = self.solution[0] from_node = starting_node for node in self.solution[1:]: total_length += self.instance.dist_matrix[from_node, node] from_node = node self.found_length = total_length if return_value: return total_length def _gap(self): self.evaluate_solution(return_value=False) self.gap = np.round((self.found_length - self.instance.best_sol) / self.instance.best_sol * 100, 2)