from numpy.core._multiarray_umath import ndarray import os from time import time as t import numpy as np import matplotlib.pyplot as plt if 'AI' in os.getcwd(): from src import * else: from AI2019.src import * class Solver_TSP: solution: ndarray found_length: float available_initializers = {"random": random_initialier.random_method, "nearest_neighbors": nearest_neighbor.nn, "best_nn": nearest_neighbor.best_nn, "multi_fragment": multi_fragment.mf } available_improvements = {"2-opt": TwoOpt.loop2opt, "2.5-opt": TwoDotFiveOpt.loop2dot5opt} def __init__(self, initializer): # self.available_methods = {"random": self.random_method, "nearest_neighbors": self.nn, # "best_nn": self.best_nn, "multi_fragment": self.mf} self.initializer = initializer self.methods = [initializer] self.name_method = "initialize with " + initializer self.solved = False assert initializer in self.available_initializers, f"the {initializer} initializer is not available currently." def bind(self, local_or_meta): assert local_or_meta in self.available_improvements, f"the {local_or_meta} method is not available currently." self.methods.append(local_or_meta) self.name_method = ", improve with " + local_or_meta def __call__(self, instance_, verbose=True, return_value=True): self.instance = instance_ self.solved = False if verbose: print(f"### solving with {self.methods} ####") start = t() self.solution = self.available_initializers[self.methods[0]](instance_) assert self.check_if_solution_is_valid(self.solution), "Error the solution is not valid" # print("init ok") for i in range(1, len(self.methods)): self.solution = self.available_improvements[self.methods[i]](self.solution, self.instance) print(len(self.solution)) assert self.check_if_solution_is_valid(self.solution), "Error the solution is not valid" print("improve ok") end = t() self.time_to_solve = np.around(end - start,3) self.solved = True self.evaluate_solution() self._gap() if verbose: print(f"### solution found with {self.gap} % gap in {self.time_to_solve} seconds ####") if return_value: return self.solution def plot_solution(self): assert self.solved, "You can't plot the solution, you need to solve it first!" plt.figure(figsize=(8, 8)) self._gap() plt.title(f"{self.instance.name} solved with {self.name_method} solver, gap {self.gap}") ordered_points = self.instance.points[self.solution] plt.plot(ordered_points[:, 1], ordered_points[:, 2], 'b-') plt.show() def check_if_solution_is_valid(self, solution): rights_values = np.sum([self.check_validation(i, solution[:-1]) for i in np.arange(self.instance.nPoints)]) if rights_values == self.instance.nPoints: return True else: return False def check_validation(self, node, solution): if np.sum(solution == node) == 1: return 1 else: return 0 def evaluate_solution(self, return_value=False): total_length = 0 starting_node = self.solution[0] from_node = starting_node for node in self.solution[1:]: total_length += self.instance.dist_matrix[from_node, node] from_node = node self.found_length = total_length if return_value: return total_length def _gap(self): self.evaluate_solution(return_value=False) self.gap = np.round(((self.found_length - self.instance.best_sol) / self.instance.best_sol) * 100, 2)