from time import time as t import numpy as np import matplotlib.pyplot as plt from src.two_opt import loop2opt from src.two_dot_five_opt import loop2dot5opt from src.simulated_annealing import sa from src.constructive_algorithms import random_method, nearest_neighbor, best_nearest_neighbor, multi_fragment_mf available_solvers = {"random": random_method, "nearest_neighbors": nearest_neighbor, "best_nn": best_nearest_neighbor, "multi_fragment": multi_fragment_mf } available_improvers = {"2-opt": loop2opt, "2.5-opt": loop2dot5opt, "simulated_annealing": sa} class SolverTSP: def __init__(self, algorithm_name, problem_instance): # assert algorithm_name in available_solvers, f"the {algorithm_name} initializer is not available currently." self.duration = np.inf self.found_length = np.inf self.algorithm_name = algorithm_name self.algorithms = [algorithm_name] self.name_method = "initialized with " + algorithm_name self.solved = False self.problem_instance = problem_instance self.solution = None def bind(self, local_or_meta): assert local_or_meta in available_improvers, f"the {local_or_meta} method is not available currently." self.algorithms.append(local_or_meta) self.name_method += ", improved with " + local_or_meta def pop(self): self.algorithms.pop() self.name_method = self.name_method[::-1][self.name_method[::-1].find("improved"[::-1]) + len("improved") + 2:][ ::-1] def compute_solution(self, verbose=True, return_value=True): self.solved = False if verbose: print(f"### solving with {self.algorithms} ####") start_time = t() self.solution = available_solvers[self.algorithms[0]](self.problem_instance) assert self.check_if_solution_is_valid(self.solution), "Error the solution is not valid" for i in range(1, len(self.algorithms)): self.solution = available_improvers[self.algorithms[i]](self.solution, self.problem_instance) assert self.check_if_solution_is_valid(self.solution), "Error the solution is not valid" end_time = t() self.duration = np.around(end_time - start_time, 3) self.solved = True self.evaluate_solution() self._gap() if return_value: return self.solution def plot_solution(self): assert self.solved, "You can't plot the solution, you need to compute it first!" plt.figure(figsize=(8, 8)) self._gap() plt.title(f"{self.problem_instance.name} solved with {self.name_method} solver, gap {self.gap}") ordered_points = self.problem_instance.points[self.solution] plt.plot(ordered_points[:, 1], ordered_points[:, 2], 'b-') plt.show() def check_if_solution_is_valid(self, solution): # rights_values = np.sum( # [self.check_validation(i, solution[:-1]) for i in np.arange(self.problem_instance.nPoints)]) rights_values = np.sum( [1 if np.sum(solution[:-1] == i) == 1 else 0 for i in np.arange(self.problem_instance.nPoints)]) return rights_values == self.problem_instance.nPoints # def check_validation(self, node, solution): # if np.sum(solution == node) == 1: # return 1 # else: # return 0 def evaluate_solution(self, return_value=False): total_length = 0 starting_node = self.solution[0] from_node = starting_node for node in self.solution[1:]: total_length += self.problem_instance.dist_matrix[from_node, node] from_node = node self.found_length = total_length if return_value: return total_length def _gap(self): self.evaluate_solution(return_value=False) self.gap = np.round( ((self.found_length - self.problem_instance.best_sol) / self.problem_instance.best_sol) * 100, 2)