import numpy as np from matplotlib import pyplot as plt from numpy.core._multiarray_umath import ndarray import os if 'AI' in os.getcwd(): from src import * else: from AI2019.src import * class Solver_TSP: solution: ndarray found_length: float available_initializers = {"random": random_initialier.random_method, "nearest_neighbors": nearest_neighbor.nn, "best_nn": nearest_neighbor.best_nn, "multi_fragment": multi_fragment.mf} def __init__(self, method): # self.available_methods = {"random": self.random_method, "nearest_neighbors": self.nn, # "best_nn": self.best_nn, "multi_fragment": self.mf} self.method = method self.solved = False assert method in self.available_initializers, f"the {method} method is not available currently." def __call__(self, instance_, verbose=True, return_value=True): self.instance = instance_ self.solved = False if verbose: print(f"### solving with {self.method} ####") self.solution = self.available_methods[self.method](instance_) assert self.check_if_solution_is_valid(self.solution), "Error the solution is not valid" self.evaluate_solution() self._gap() if verbose: print(f"### solution found with {self.gap} % gap ####") self._gap() if return_value: return self.solution # def random_method(self, instance_): # n = int(instance_.nPoints) # solution = np.random.choice(np.arange(n), size=n, replace=False) # self.solution = np.concatenate([solution, [solution[0]]]) # self.solved = True # return self.solution # # def nn(self, instance_, starting_node=0): # dist_matrix = np.copy(instance_.dist_matrix) # n = int(instance_.nPoints) # node = starting_node # tour = [node] # for _ in range(n - 1): # for new_node in np.argsort(dist_matrix[node]): # if new_node not in tour: # tour.append(new_node) # node = new_node # break # tour.append(starting_node) # self.solution = np.array(tour) # self.solved = True # return self.solution # # def best_nn(self, instance_): # solutions, lens = [], [] # for start in range(self.instance.nPoints): # new_solution = self.nn(instance_, starting_node=start) # solutions.append(new_solution) # assert self.check_if_solution_is_valid(new_solution), "error on best_nn method" # lens.append(self.evaluate_solution(return_value=True)) # # self.solution = solutions[np.argmin(lens)] # self.solved = True # return self.solution # # def mf(self, instance): # mat = np.copy(instance.dist_matrix) # mat = np.triu(mat) # mat[mat == 0] = 100000 # solution = {str(i): [] for i in range(instance.nPoints)} # start_list = [i for i in range(instance.nPoints)] # inside = 0 # for el in np.argsort(mat.flatten()): # node1, node2 = el // instance.nPoints, el % instance.nPoints # possible_edge = [node1, node2] # if multi_fragment.check_if_available(node1, node2, solution): # if multi_fragment.check_if_not_close(possible_edge, solution): # # print("entrato", inside) # solution[str(node1)].append(node2) # solution[str(node2)].append(node1) # if len(solution[str(node1)]) == 2: # start_list.remove(node1) # if len(solution[str(node2)]) == 2: # start_list.remove(node2) # inside += 1 # # print(node1, node2, inside) # if inside == instance.nPoints - 1: # # print(f"ricostruire la solutione da {start_list}", # # f"vicini di questi due nodi {[solution[str(i)] for i in start_list]}") # solution = multi_fragment.create_solution(start_list, solution) # self.solution = solution # self.solved = True # return self.solution def plot_solution(self): assert self.solved, "You can't plot the solution, you need to solve it first!" plt.figure(figsize=(8, 8)) self._gap() plt.title(f"{self.instance.name} solved with {self.method} solver, gap {self.gap}") ordered_points = self.instance.points[self.solution] plt.plot(ordered_points[:, 1], ordered_points[:, 2], 'b-') plt.show() def check_if_solution_is_valid(self, solution): rights_values = np.sum([self.check_validation(i, solution[:-1]) for i in np.arange(self.instance.nPoints)]) if rights_values == self.instance.nPoints: return True else: return False def check_validation(self, node, solution): if np.sum(solution == node) == 1: return 1 else: return 0 def evaluate_solution(self, return_value=False): total_length = 0 starting_node = self.solution[0] from_node = starting_node for node in self.solution[1:]: total_length += self.instance.dist_matrix[from_node, node] from_node = node self.found_length = total_length if return_value: return total_length def _gap(self): self.evaluate_solution(return_value=False) self.gap = np.round(((self.found_length - self.instance.best_sol) / self.instance.best_sol) * 100, 2)