85 lines
3 KiB
Python
85 lines
3 KiB
Python
import numpy as np
|
|
from matplotlib import pyplot as plt
|
|
from numpy.core._multiarray_umath import ndarray
|
|
|
|
|
|
class Solver_TSP:
|
|
|
|
solution: ndarray
|
|
found_length: float
|
|
|
|
def __init__(self, method):
|
|
self.available_methods = {"random": self.random_method, "nearest_neighbors": self.nn}
|
|
self.method = method
|
|
self.solved = False
|
|
assert method in self.available_methods, f"the {method} method is not available currently."
|
|
|
|
def __call__(self, instance_, verbose=True, return_value=True):
|
|
self.instance = instance_
|
|
if verbose:
|
|
print("### solving ####")
|
|
self.solution = self.available_methods[self.method](instance_)
|
|
assert self.check_if_solution_is_valid(self.solution), "Error the solution is not valid"
|
|
if verbose:
|
|
print("### solution found ####")
|
|
self._gap()
|
|
if return_value:
|
|
return self.solution
|
|
|
|
def random_method(self, instance_):
|
|
n = int(instance_.nPoints)
|
|
solution = np.random.choice(np.arange(n), size=n, replace=False)
|
|
self.solution = np.concatenate([solution, [solution[0]]])
|
|
self.solved = True
|
|
return self.solution
|
|
|
|
def nn(self, instance_, starting_node=0):
|
|
dist_matrix = np.copy(instance_.dist_matrix)
|
|
n = int(instance_.nPoints)
|
|
node = np.argmin([starting_node])
|
|
tour = [node]
|
|
for _ in range(n - 2):
|
|
for node in np.argsort(dist_matrix[node]):
|
|
if node not in tour:
|
|
tour.append(node)
|
|
tour.append(starting_node)
|
|
self.solution = np.array(tour)
|
|
self.solved = True
|
|
return self.solution
|
|
|
|
def plot_solution(self):
|
|
assert self.solved, "You can't plot the solution, you need to solve it first!"
|
|
plt.figure(figsize=(8, 8))
|
|
plt.title(self.instance.name)
|
|
ordered_points = self.instance.points[self.solution]
|
|
plt.plot(ordered_points[:, 1], ordered_points[:, 2], 'b-')
|
|
|
|
def check_if_solution_is_valid(self, solution):
|
|
rights_values = np.sum([self.check_validation(i, solution[:-1]) for i in np.arange(self.instance.nPoints)])
|
|
if rights_values == self.instance.nPoints:
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def check_validation(self, node, solution):
|
|
if np.sum(solution == node) == 1:
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
def evaluate_solution(self, return_value=True):
|
|
total_length = 0
|
|
starting_node = self.solution[0]
|
|
from_node = starting_node
|
|
for node in self.solution[1:]:
|
|
total_length += self.instance.dist_matrix[from_node, node]
|
|
from_node = node
|
|
|
|
total_length += self.instance.dist_matrix[from_node, starting_node]
|
|
self.found_length = total_length
|
|
if return_value:
|
|
return total_length
|
|
|
|
def _gap(self):
|
|
self.evaluate_solution(return_value=False)
|
|
self.gap = np.round((self.found_length - self.instance.best_sol) / self.instance.best_sol * 100, 2)
|