This repository has been archived on 2021-10-31. You can view files and clone it, but cannot push or open issues or pull requests.
AICup/run.py
2020-10-01 18:03:04 +02:00

66 lines
2.7 KiB
Python

import glob
import pandas as pd
from src.io_tsp import ProblemInstance
from src.TSP_solver import SolverTSP, available_improvers, available_solvers
import numpy as np
def use_solver_to_compute_solution(solver, improve, index, results, name, verbose, show_plots):
solver.bind(improve)
solver.compute_solution(return_value=False, verbose=verbose)
if verbose:
print(f"the total length for the solution found is {solver.found_length}",
f"while the optimal length is {solver.problem_instance.best_sol}",
f"the gap is {solver.gap}%",
f"the solution is found in {solver.duration} seconds", sep="\n")
index.append((name, solver.name_method))
results.append([solver.found_length, solver.problem_instance.best_sol, solver.gap, solver.duration])
if show_plots:
solver.plot_solution()
def run(show_plots=False, verbose=False):
# problems = glob.glob('./problems/*.tsp')
problems = ["./problems/eil76.tsp"]
solvers_names = available_solvers.keys()
improvers_names = available_improvers.keys()
results = []
index = []
for problem_path in problems:
prob_instance = ProblemInstance(problem_path)
if verbose:
prob_instance.print_info()
if show_plots:
prob_instance.plot_data()
for solver_name in solvers_names:
for improve in improvers_names:
solver = SolverTSP(solver_name, prob_instance)
use_solver_to_compute_solution(solver, improve, index, results, problem_path, verbose, show_plots)
for improve2 in [j for j in improvers_names if j not in [improve]]:
use_solver_to_compute_solution(solver, improve2, index, results, problem_path, verbose, show_plots)
for improve3 in [j for j in improvers_names if j not in [improve, improve2]]:
use_solver_to_compute_solution(solver, improve3, index, results, problem_path, verbose,
show_plots)
solver.pop()
solver.pop()
if prob_instance.exist_opt and show_plots:
solver = SolverTSP("optimal", prob_instance)
solver.solved = True
solver.solution = np.concatenate([prob_instance.optimal_tour, [prob_instance.optimal_tour[0]]])
solver.plot_solution()
index = pd.MultiIndex.from_tuples(index, names=['problem', 'method'])
return pd.DataFrame(results, index=index, columns=["tour length", "optimal solution", "gap", "time to solve"])
if __name__ == '__main__':
df = run(show_plots=False, verbose=True)
df.to_csv("./results.csv")