140 lines
5.5 KiB
Python
140 lines
5.5 KiB
Python
import numpy as np
|
|
from matplotlib import pyplot as plt
|
|
from numpy.core._multiarray_umath import ndarray
|
|
import os
|
|
if 'AI' in os.getcwd():
|
|
from src.utils import *
|
|
else:
|
|
from AI2019.src.utils import *
|
|
|
|
|
|
class Solver_TSP:
|
|
|
|
solution: ndarray
|
|
found_length: float
|
|
available_methods = {"random": lambda x: x, "nearest_neighbors": lambda x: x,
|
|
"best_nn": lambda x: x, "multi_fragment": lambda x: x}
|
|
|
|
def __init__(self, method):
|
|
self.available_methods = {"random": self.random_method, "nearest_neighbors": self.nn,
|
|
"best_nn": self.best_nn, "multi_fragment": self.mf}
|
|
self.method = method
|
|
self.solved = False
|
|
assert method in self.available_methods, f"the {method} method is not available currently."
|
|
|
|
def __call__(self, instance_, verbose=True, return_value=True):
|
|
self.instance = instance_
|
|
self.solved = False
|
|
if verbose:
|
|
print(f"### solving with {self.method} ####")
|
|
self.solution = self.available_methods[self.method](instance_)
|
|
assert self.check_if_solution_is_valid(self.solution), "Error the solution is not valid"
|
|
self.evaluate_solution()
|
|
self._gap()
|
|
if verbose:
|
|
print(f"### solution found with {self.gap} % gap ####")
|
|
self._gap()
|
|
if return_value:
|
|
return self.solution
|
|
|
|
def random_method(self, instance_):
|
|
n = int(instance_.nPoints)
|
|
solution = np.random.choice(np.arange(n), size=n, replace=False)
|
|
self.solution = np.concatenate([solution, [solution[0]]])
|
|
self.solved = True
|
|
return self.solution
|
|
|
|
def nn(self, instance_, starting_node=0):
|
|
dist_matrix = np.copy(instance_.dist_matrix)
|
|
n = int(instance_.nPoints)
|
|
node = starting_node
|
|
tour = [node]
|
|
for _ in range(n - 1):
|
|
for new_node in np.argsort(dist_matrix[node]):
|
|
if new_node not in tour:
|
|
tour.append(new_node)
|
|
node = new_node
|
|
break
|
|
tour.append(starting_node)
|
|
self.solution = np.array(tour)
|
|
self.solved = True
|
|
return self.solution
|
|
|
|
def best_nn(self, instance_):
|
|
solutions, lens = [], []
|
|
for start in range(self.instance.nPoints):
|
|
new_solution = self.nn(instance_, starting_node=start)
|
|
solutions.append(new_solution)
|
|
assert self.check_if_solution_is_valid(new_solution), "error on best_nn method"
|
|
lens.append(self.evaluate_solution(return_value=True))
|
|
|
|
self.solution = solutions[np.argmin(lens)]
|
|
self.solved = True
|
|
return self.solution
|
|
|
|
def mf(self, instance):
|
|
mat = np.copy(instance.dist_matrix)
|
|
mat = np.triu(mat)
|
|
mat[mat == 0] = 100000
|
|
solution = {str(i): [] for i in range(instance.nPoints)}
|
|
start_list = [i for i in range(instance.nPoints)]
|
|
inside = 0
|
|
for el in np.argsort(mat.flatten()):
|
|
node1, node2 = el // instance.nPoints, el % instance.nPoints
|
|
possible_edge = [node1, node2]
|
|
if multi_fragment.check_if_available(node1, node2, solution):
|
|
if multi_fragment.check_if_not_close(possible_edge, solution):
|
|
# print("entrato", inside)
|
|
solution[str(node1)].append(node2)
|
|
solution[str(node2)].append(node1)
|
|
if len(solution[str(node1)]) == 2:
|
|
start_list.remove(node1)
|
|
if len(solution[str(node2)]) == 2:
|
|
start_list.remove(node2)
|
|
inside += 1
|
|
# print(node1, node2, inside)
|
|
if inside == instance.nPoints - 1:
|
|
# print(f"ricostruire la solutione da {start_list}",
|
|
# f"vicini di questi due nodi {[solution[str(i)] for i in start_list]}")
|
|
solution = multi_fragment.create_solution(start_list, solution)
|
|
self.solution = solution
|
|
self.solved = True
|
|
return self.solution
|
|
|
|
def plot_solution(self):
|
|
assert self.solved, "You can't plot the solution, you need to solve it first!"
|
|
plt.figure(figsize=(8, 8))
|
|
self._gap()
|
|
plt.title(f"{self.instance.name} solved with {self.method} solver, gap {self.gap}")
|
|
ordered_points = self.instance.points[self.solution]
|
|
plt.plot(ordered_points[:, 1], ordered_points[:, 2], 'b-')
|
|
plt.show()
|
|
|
|
def check_if_solution_is_valid(self, solution):
|
|
rights_values = np.sum([self.check_validation(i, solution[:-1]) for i in np.arange(self.instance.nPoints)])
|
|
if rights_values == self.instance.nPoints:
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def check_validation(self, node, solution):
|
|
if np.sum(solution == node) == 1:
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
def evaluate_solution(self, return_value=False):
|
|
total_length = 0
|
|
starting_node = self.solution[0]
|
|
from_node = starting_node
|
|
for node in self.solution[1:]:
|
|
total_length += self.instance.dist_matrix[from_node, node]
|
|
from_node = node
|
|
|
|
self.found_length = total_length
|
|
if return_value:
|
|
return total_length
|
|
|
|
def _gap(self):
|
|
self.evaluate_solution(return_value=False)
|
|
self.gap = np.round(((self.found_length - self.instance.best_sol) / self.instance.best_sol) * 100, 2)
|