This repository has been archived on 2021-10-31. You can view files and clone it, but cannot push or open issues or pull requests.
AICup/src/TSP_solver.py
2019-11-04 06:43:54 +01:00

105 lines
3.7 KiB
Python

import numpy as np
from matplotlib import pyplot as plt
from numpy.core._multiarray_umath import ndarray
class Solver_TSP:
solution: ndarray
found_length: float
def __init__(self, method):
self.available_methods = {"random": self.random_method, "nearest_neighbors": self.nn,
"best_nn": self.best_nn}
self.method = method
self.solved = False
assert method in self.available_methods, f"the {method} method is not available currently."
def __call__(self, instance_, verbose=True, return_value=True):
self.instance = instance_
self.solved = False
if verbose:
print(f"### solving with {self.method} ####")
self.solution = self.available_methods[self.method](instance_)
assert self.check_if_solution_is_valid(self.solution), "Error the solution is not valid"
self.evaluate_solution()
self._gap()
if verbose:
print(f"### solution found with {self.gap} % gap ####")
self._gap()
if return_value:
return self.solution
def random_method(self, instance_):
n = int(instance_.nPoints)
solution = np.random.choice(np.arange(n), size=n, replace=False)
self.solution = np.concatenate([solution, [solution[0]]])
self.solved = True
return self.solution
def nn(self, instance_, starting_node=0):
dist_matrix = np.copy(instance_.dist_matrix)
n = int(instance_.nPoints)
node = starting_node
tour = [node]
for _ in range(n - 1):
for new_node in np.argsort(dist_matrix[node]):
if new_node not in tour:
tour.append(new_node)
node = new_node
break
tour.append(starting_node)
self.solution = np.array(tour)
self.solved = True
return self.solution
def best_nn(self, instance_):
solutions, lens = [], []
for start in range(self.instance.nPoints):
new_solution = self.nn(instance_, starting_node=start)
solutions.append(new_solution)
assert self.check_if_solution_is_valid(new_solution), "error on best_nn method"
lens.append(self.evaluate_solution(return_value=True))
self.solution = solutions[np.argmin(lens)]
self.solved = True
return self.solution
def plot_solution(self):
assert self.solved, "You can't plot the solution, you need to solve it first!"
plt.figure(figsize=(8, 8))
self._gap()
plt.title(f"{self.instance.name} solved with {self.method}, gap {self.gap}")
ordered_points = self.instance.points[self.solution]
plt.plot(ordered_points[:, 1], ordered_points[:, 2], 'b-')
plt.show()
def check_if_solution_is_valid(self, solution):
rights_values = np.sum([self.check_validation(i, solution[:-1]) for i in np.arange(self.instance.nPoints)])
if rights_values == self.instance.nPoints:
return True
else:
return False
def check_validation(self, node, solution):
if np.sum(solution == node) == 1:
return 1
else:
return 0
def evaluate_solution(self, return_value=False):
total_length = 0
starting_node = self.solution[0]
from_node = starting_node
for node in self.solution[1:]:
total_length += self.instance.dist_matrix[from_node, node]
from_node = node
self.found_length = total_length
if return_value:
return total_length
def _gap(self):
self.evaluate_solution(return_value=False)
self.gap = np.round(((self.found_length - self.instance.best_sol) / self.instance.best_sol) * 100, 2)