This repository has been archived on 2021-10-31. You can view files and clone it, but cannot push or open issues or pull requests.
AICup/src/io_tsp.py
2020-09-25 13:20:28 +02:00

76 lines
2.5 KiB
Python

import numpy as np
from typing import List
from matplotlib import pyplot as plt
from numpy.core._multiarray_umath import ndarray
from src.utils import distance_euc
class Instance:
nPoints: int
best_sol: int
name: str
lines: List[str]
dist_matrix: ndarray
points: ndarray
def __init__(self, name_tsp):
self.read_instance(name_tsp)
self.exist_opt = None # TODO determine default value
self.optimal_tour = None
def read_instance(self, name_tsp):
# read raw data
file_object = open(name_tsp)
data = file_object.read()
file_object.close()
self.lines = data.splitlines()
# store data set information
self.name = self.lines[0].split(' ')[2]
self.nPoints = np.int(self.lines[3].split(' ')[2])
self.best_sol = np.float(self.lines[5].split(' ')[2])
# read all data points and store them
self.points = np.zeros((self.nPoints, 3))
for i in range(self.nPoints):
line_i = self.lines[7 + i].split(' ')
self.points[i, 0] = int(line_i[0])
self.points[i, 1] = line_i[1]
self.points[i, 2] = line_i[2]
self.create_dist_matrix()
self.exist_opt = False
if [name for name in ["eil76", "kroA100"] if name in name_tsp]:
self.exist_opt = True
file_object = open(name_tsp.replace(".tsp", ".opt.tour"))
data = file_object.read()
file_object.close()
lines = data.splitlines()
# read all data points and store them
self.optimal_tour = np.zeros(self.nPoints, dtype=np.int)
for i in range(self.nPoints):
line_i = lines[5 + i].split(' ')
self.optimal_tour[i] = int(line_i[0]) - 1
def print_info(self):
print('name: ' + self.name)
print('nPoints: ' + str(self.nPoints))
print('best_sol: ' + str(self.best_sol))
def plot_data(self):
plt.figure(figsize=(8, 8))
plt.title(self.name)
plt.scatter(self.points[:, 1], self.points[:, 2])
for i, txt in enumerate(np.arange(self.nPoints)): # tour_found[:-1]
plt.annotate(txt, (self.points[i, 1], self.points[i, 2]))
plt.show()
def create_dist_matrix(self):
self.dist_matrix = np.zeros((self.nPoints, self.nPoints))
for i in range(self.nPoints):
for j in range(i, self.nPoints):
self.dist_matrix[i, j] = distance_euc(self.points[i][1:3], self.points[j][1:3])
self.dist_matrix += self.dist_matrix.T