This repository has been archived on 2021-10-31. You can view files and clone it, but cannot push or open issues or pull requests.
AICup/code/aco/TSP_solver.py

78 lines
2.8 KiB
Python

from time import time as t
import numpy as np
import matplotlib.pyplot as plt
from aco.ant_colony import ant_colony_opt
class TSPSolver:
def __init__(self, problem_instance):
self.duration = np.inf
self.found_length = np.inf
self.solved = False
self.problem_instance = problem_instance
self.solution = None
def compute_solution(self, verbose=True, return_value=True):
self.solved = False
if verbose:
print(f"### solving with 'C++ ant colony optimization' ####")
start_time = t()
self.solution = ant_colony_opt(self.problem_instance)
if not self.check_if_solution_is_valid():
print(f"Error the solution of 'C++ ant colony optimization'"
f" for problem {self.problem_instance.name} is not valid")
if return_value:
return False
end_time = t()
self.duration = np.around(end_time - start_time, 3)
self.solved = True
self.evaluate_solution()
self._gap()
if return_value:
return self.solution
def plot_solution(self):
assert self.solved, "You can't plot the solution, you need to compute it first!"
plt.figure(figsize=(8, 8))
self._gap()
plt.title(f"{self.problem_instance.name} solved with 'C++ ant colony optimization'"
f" solver, gap {self.gap}")
ordered_points = self.problem_instance.points[self.solution]
plt.plot(ordered_points[:, 1], ordered_points[:, 2], 'b-')
plt.show()
def check_if_solution_is_valid(self):
rights_values = np.sum(
[self.check_validation(i, self.solution[:-1]) for i in
np.arange(self.problem_instance.nPoints)])
return rights_values == self.problem_instance.nPoints
def check_validation(self, node, solution):
if np.sum(solution == node) == 1:
return 1
else:
return 0
def evaluate_solution(self, return_value=False):
total_length = 0
starting_node = self.solution[0]
from_node = starting_node
for node in self.solution[1:]:
total_length += self.problem_instance.dist_matrix[from_node, node]
from_node = node
self.found_length = total_length
if return_value:
return total_length
def pass_and_check_if_solution_is_valid(self, solution):
rights_values = np.sum(
[self.check_validation(i, solution[:-1]) for i in
np.arange(self.problem_instance.nPoints)])
return rights_values == self.problem_instance.nPoints
def _gap(self):
self.evaluate_solution(return_value=False)
self.gap = np.round(
((self.found_length - self.problem_instance.best_sol) /
self.problem_instance.best_sol) * 100, 2)