78 lines
2.8 KiB
Python
78 lines
2.8 KiB
Python
from time import time as t
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from aco.ant_colony import ant_colony_opt
|
|
|
|
class TSPSolver:
|
|
def __init__(self, problem_instance):
|
|
self.duration = np.inf
|
|
self.found_length = np.inf
|
|
self.solved = False
|
|
self.problem_instance = problem_instance
|
|
self.solution = None
|
|
|
|
def compute_solution(self, verbose=True, return_value=True):
|
|
self.solved = False
|
|
if verbose:
|
|
print(f"### solving with 'C++ ant colony optimization' ####")
|
|
start_time = t()
|
|
self.solution = ant_colony_opt(self.problem_instance)
|
|
if not self.check_if_solution_is_valid():
|
|
print(f"Error the solution of 'C++ ant colony optimization'"
|
|
f" for problem {self.problem_instance.name} is not valid")
|
|
if return_value:
|
|
return False
|
|
|
|
end_time = t()
|
|
self.duration = np.around(end_time - start_time, 3)
|
|
self.solved = True
|
|
self.evaluate_solution()
|
|
self._gap()
|
|
if return_value:
|
|
return self.solution
|
|
|
|
def plot_solution(self):
|
|
assert self.solved, "You can't plot the solution, you need to compute it first!"
|
|
plt.figure(figsize=(8, 8))
|
|
self._gap()
|
|
plt.title(f"{self.problem_instance.name} solved with 'C++ ant colony optimization'"
|
|
f" solver, gap {self.gap}")
|
|
ordered_points = self.problem_instance.points[self.solution]
|
|
plt.plot(ordered_points[:, 1], ordered_points[:, 2], 'b-')
|
|
plt.show()
|
|
|
|
def check_if_solution_is_valid(self):
|
|
rights_values = np.sum(
|
|
[self.check_validation(i, self.solution[:-1]) for i in
|
|
np.arange(self.problem_instance.nPoints)])
|
|
return rights_values == self.problem_instance.nPoints
|
|
|
|
def check_validation(self, node, solution):
|
|
if np.sum(solution == node) == 1:
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
def evaluate_solution(self, return_value=False):
|
|
total_length = 0
|
|
starting_node = self.solution[0]
|
|
from_node = starting_node
|
|
for node in self.solution[1:]:
|
|
total_length += self.problem_instance.dist_matrix[from_node, node]
|
|
from_node = node
|
|
|
|
self.found_length = total_length
|
|
if return_value:
|
|
return total_length
|
|
|
|
def pass_and_check_if_solution_is_valid(self, solution):
|
|
rights_values = np.sum(
|
|
[self.check_validation(i, solution[:-1]) for i in
|
|
np.arange(self.problem_instance.nPoints)])
|
|
return rights_values == self.problem_instance.nPoints
|
|
|
|
def _gap(self):
|
|
self.evaluate_solution(return_value=False)
|
|
self.gap = np.round(
|
|
((self.found_length - self.problem_instance.best_sol) /
|
|
self.problem_instance.best_sol) * 100, 2)
|