This repository has been archived on 2021-10-31. You can view files and clone it, but cannot push or open issues or pull requests.
DSA/notes.md

35 lines
1.1 KiB
Markdown
Raw Normal View History

2019-02-21 11:17:07 +00:00
<!-- vim: set ts=2 sw=2 et tw=80: -->
# Complexity
General way to describe efficiency algorithms (linear vs exponential)
indipendent from the computer architecture/speed.
## The RAM - random-access machine
Model of computer used in this course.
Has random-access memory.
### Basic types and basic operations
Has basic types (like int, float, 64bit words). A basic step is an operation on
a basic type (load, store, add, sub, ...). A branch is a basic step. Invoking a
function and returning is a basic step as well, but the entire execution takes
longer.
Complexity is not measured by the input value but by the input size in bits.
`Fibonacci(10)` in linear in `n` (size of the value) but exponential in `l`
(number of bits in `n`, or size of the input).
By default, WORST complexity is considered.
## Donald Knuth's A-notation
A(c) indicates a quantity that is absolutely at most c
Antonio's weight = (pronounced "is") A(100)
## (big-) O-notation
f(n) = O(g(n))
*Definition:* if f(n) is such that f(n) = k * A(g(n)) for all _n_ sufficiently
large and for some constant k > 0, then we say that