Fixed GA3 again
This commit is contained in:
parent
4bca4b25ac
commit
d37f05664d
4 changed files with 507 additions and 130 deletions
BIN
GA3/ga3.pdf
BIN
GA3/ga3.pdf
Binary file not shown.
391
GA3/ga3.tex
391
GA3/ga3.tex
|
@ -222,6 +222,124 @@ Delete 12:
|
|||
\end{verbatim}
|
||||
}
|
||||
|
||||
The following printout was obtained by running the following BST implementation.with the following command:
|
||||
|
||||
\begin{verbatim}
|
||||
./tree.py 12 6 1 7 4 11 15 9 5 13 8 14 3 10 2 \| 6 2 12
|
||||
\end{verbatim}
|
||||
|
||||
\begin{lstlisting}[caption=BST implementation, language=python]
|
||||
#!/usr/bin/env python3
|
||||
# $\textbf{\color{red}vim}$: set ts=2 sw=2 et tw=80:
|
||||
|
||||
import sys
|
||||
|
||||
class Node:
|
||||
def __init__(self, k):
|
||||
self.key = k
|
||||
self.left = None
|
||||
self.right = None
|
||||
self.parent = None
|
||||
|
||||
def set_left(self, kNode):
|
||||
kNode.parent = self
|
||||
self.left = kNode
|
||||
|
||||
def set_right(self, kNode):
|
||||
kNode.parent = self
|
||||
self.right = kNode
|
||||
|
||||
|
||||
def search(tree, k):
|
||||
if tree is None:
|
||||
return None
|
||||
elif tree.key == k:
|
||||
return tree
|
||||
elif k < tree.key:
|
||||
return search(tree.left, k)
|
||||
else:
|
||||
return search(tree.right, k)
|
||||
|
||||
|
||||
def insert(t, k):
|
||||
insert_node(t, Node(k))
|
||||
|
||||
|
||||
def insert_node(t, node):
|
||||
if node.key < t.key:
|
||||
if t.left is None:
|
||||
t.set_left(node)
|
||||
else:
|
||||
insert_node(t.left, node)
|
||||
else:
|
||||
if t.right is None:
|
||||
t.set_right(node)
|
||||
else:
|
||||
insert_node(t.right, node)
|
||||
|
||||
|
||||
def root_insert(t, k):
|
||||
if t is None:
|
||||
return k
|
||||
if k.key > t.key:
|
||||
t.set_right(root_insert(t.right, k))
|
||||
return left_rotate(t)
|
||||
else:
|
||||
t.set_left(root_insert(t.left, k))
|
||||
return right_rotate(t)
|
||||
|
||||
|
||||
def unlink_me(node, to_link):
|
||||
if node.parent == None:
|
||||
tr = node
|
||||
node.key = to_link.key
|
||||
node.left = to_link.left
|
||||
node.right = to_link.right
|
||||
return node
|
||||
elif node.parent.left == node:
|
||||
node.parent.left = to_link
|
||||
return to_link
|
||||
else:
|
||||
node.parent.right = to_link
|
||||
return to_link
|
||||
|
||||
|
||||
def delete(t, k):
|
||||
to_delete = search(t, k)
|
||||
if to_delete is None:
|
||||
return
|
||||
elif to_delete.left is None:
|
||||
unlink_me(to_delete, to_delete.right)
|
||||
elif to_delete.right is None:
|
||||
unlink_me(to_delete, to_delete.left)
|
||||
else:
|
||||
if abs(to_delete.left.key - to_delete.key) < abs(to_delete.right.key -
|
||||
to_delete.key):
|
||||
ins = to_delete.right
|
||||
new_branch = unlink_me(to_delete, to_delete.left)
|
||||
insert_node(new_branch, ins)
|
||||
else:
|
||||
ins = to_delete.left
|
||||
new_branch = unlink_me(to_delete, to_delete.right)
|
||||
insert_node(new_branch, ins)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = [x for x in sys.argv[1:]]
|
||||
T = Node(int(args[0]))
|
||||
for i in range(1, len(args)):
|
||||
if args[i] == '|':
|
||||
break
|
||||
print_tree(T)
|
||||
print("\nInsert " + str(args[i]) + ":")
|
||||
insert(T, int(args[i]))
|
||||
for i in range(i+1, len(args)):
|
||||
print_tree(T)
|
||||
print("\nDelete " + str(args[i]) + ":")
|
||||
delete(T, int(args[i]))
|
||||
print_tree(T)
|
||||
\end{lstlisting}
|
||||
|
||||
\section{Exercise 2}
|
||||
|
||||
\subsection{Point A}
|
||||
|
@ -262,22 +380,22 @@ Insert 11:
|
|||
4R 7R 12R
|
||||
|
||||
Insert 15:
|
||||
11B
|
||||
//// \
|
||||
6R 12B
|
||||
//// \ \
|
||||
1B 7B 15R
|
||||
6B
|
||||
//// \\\\
|
||||
1B 11R
|
||||
\ / \
|
||||
4R 7B 12B
|
||||
\
|
||||
4R
|
||||
15R
|
||||
|
||||
Insert 9:
|
||||
11B
|
||||
/////// \
|
||||
6R 12B
|
||||
//// \ \
|
||||
1B 7B 15R
|
||||
6B
|
||||
//// \\\\\\\
|
||||
1B 11R
|
||||
\ //// \
|
||||
4R 7B 12B
|
||||
\ \
|
||||
4R 9R
|
||||
9R 15R
|
||||
|
||||
Insert 5:
|
||||
6B
|
||||
|
@ -289,82 +407,216 @@ Insert 5:
|
|||
9R 15R
|
||||
|
||||
Insert 13:
|
||||
11B
|
||||
/////// \\\\\
|
||||
6R 13B
|
||||
//// \ / \
|
||||
4B 7B 12R 15R
|
||||
/ \ \
|
||||
1R 5R 9R
|
||||
6B
|
||||
//// \\\\\\\
|
||||
4B 11R
|
||||
/ \ //// \\\\\
|
||||
1R 5R 7B 13B
|
||||
\ / \
|
||||
9R 12R 15R
|
||||
|
||||
Insert 8:
|
||||
8B
|
||||
//// \\\\
|
||||
6R 11R
|
||||
//// \ / \\\\\
|
||||
4B 7R 9R 13B
|
||||
6B
|
||||
//// \\\\\\\\\\
|
||||
4B 11R
|
||||
/ \ //// \\\\\
|
||||
1R 5R 8B 13B
|
||||
/ \ / \
|
||||
1R 5R 12R 15R
|
||||
7R 9R 12R 15R
|
||||
|
||||
Insert 14:
|
||||
8B
|
||||
//// \\\\
|
||||
6B 11B
|
||||
//// \ / \\\\\
|
||||
4B 7R 9B 13B
|
||||
/ \ / \\\\\
|
||||
1R 5R 12B 15B
|
||||
/
|
||||
14R
|
||||
11B
|
||||
////////// \\\\\
|
||||
6R 13R
|
||||
//// \\\\ / \\\\\
|
||||
4B 8B 12B 15B
|
||||
/ \ / \ /
|
||||
1R 5R 7R 9R 14R
|
||||
|
||||
Insert 3:
|
||||
6B
|
||||
//// \\\\
|
||||
4B 8R
|
||||
//// \ / \\\\
|
||||
1B 5B 7B 11B
|
||||
\ / \\\\\
|
||||
3R 9B 13B
|
||||
/ \\\\\
|
||||
12B 15B
|
||||
/
|
||||
14R
|
||||
11B
|
||||
////////// \\\\\
|
||||
6B 13B
|
||||
//// \\\\ / \\\\\
|
||||
4R 8B 12B 15B
|
||||
//// \ / \ /
|
||||
1B 5B 7R 9R 14R
|
||||
\
|
||||
3R
|
||||
|
||||
Insert 10:
|
||||
6B
|
||||
//// \\\\
|
||||
4B 8R
|
||||
//// \ / \\\\\\\\
|
||||
1B 5B 7B 11B
|
||||
\ ///// \\\\\
|
||||
3R 9B 13B
|
||||
\ / \\\\\
|
||||
10R 12B 15B
|
||||
/
|
||||
14R
|
||||
11B
|
||||
////////////// \\\\\
|
||||
6B 13B
|
||||
//// \\\\ / \\\\\
|
||||
4R 8R 12B 15B
|
||||
//// \ / \ /
|
||||
1B 5B 7B 9B 14R
|
||||
\ \
|
||||
3R 10R
|
||||
|
||||
Insert 2:
|
||||
6B
|
||||
//// \\\\
|
||||
4B 8R
|
||||
//// \ / \\\\\\\\
|
||||
2B 5B 7B 11B
|
||||
/ \ ///// \\\\\
|
||||
1R 3R 9B 13B
|
||||
\ / \\\\\
|
||||
10R 12B 15B
|
||||
/
|
||||
14R
|
||||
11B
|
||||
////////////// \\\\\
|
||||
6B 13B
|
||||
//// \\\\ / \\\\\
|
||||
4R 8R 12B 15B
|
||||
//// \ / \ /
|
||||
2B 5B 7B 9B 14R
|
||||
/ \ \
|
||||
1R 3R 10R
|
||||
\end{verbatim}%
|
||||
}%
|
||||
%
|
||||
Assume every empty branch has as a child a black leaf node.
|
||||
|
||||
The following printout was generated by this red-black tree implementation in python with the following command:
|
||||
|
||||
\begin{verbatim}
|
||||
python3 redblack.py 12 6 1 7 4 11 15 9 5 13 8 14 3 10 2
|
||||
\end{verbatim}
|
||||
|
||||
\begin{lstlisting}[caption=Red-black tree implementation, language=python]
|
||||
#!/usr/bin/env python3
|
||||
# $\textbf{\color{red}vim}$: set ts=2 sw=2 et tw=80:
|
||||
|
||||
import sys
|
||||
|
||||
class Tree:
|
||||
def __init__(self, root):
|
||||
self.root = root
|
||||
root.parent = self
|
||||
|
||||
def set_root(self, root):
|
||||
self.root = root
|
||||
root.parent = self
|
||||
|
||||
|
||||
class Node:
|
||||
def __init__(self, k):
|
||||
self.key = k
|
||||
self.isBlack = True
|
||||
self.left = None
|
||||
self.right = None
|
||||
self.parent = None
|
||||
|
||||
def set_left(self, kNode):
|
||||
if kNode is not None:
|
||||
kNode.parent = self
|
||||
self.left = kNode
|
||||
|
||||
def set_right(self, kNode):
|
||||
if kNode is not None:
|
||||
kNode.parent = self
|
||||
self.right = kNode
|
||||
|
||||
|
||||
def is_black(node):
|
||||
return node is None or node.isBlack
|
||||
|
||||
|
||||
def insert(tree, node):
|
||||
y = None
|
||||
x = tree
|
||||
# Imperatively find place to insert node
|
||||
while x is not None:
|
||||
y = x
|
||||
if node.key < x.key:
|
||||
x = x.left
|
||||
else:
|
||||
x = x.right
|
||||
|
||||
node.parent = y
|
||||
if y is None:
|
||||
tree = node
|
||||
elif node.key < y.key:
|
||||
y.left = node
|
||||
else:
|
||||
y.right = node
|
||||
node.isBlack = False
|
||||
insert_fixup(tree, node)
|
||||
|
||||
|
||||
def sibling(node):
|
||||
if node.parent.left is node:
|
||||
return node.parent.right
|
||||
else:
|
||||
return node.parent.left
|
||||
|
||||
|
||||
def uncle(node):
|
||||
return sibling(node.parent)
|
||||
|
||||
|
||||
def right_rotate(x):
|
||||
p = x.parent
|
||||
t = x.left
|
||||
x.set_left(t.right)
|
||||
t.set_right(x)
|
||||
if isinstance(p, Tree):
|
||||
p.set_root(t)
|
||||
elif p.left is x:
|
||||
p.set_left(t)
|
||||
else:
|
||||
p.set_right(t)
|
||||
|
||||
|
||||
def left_rotate(x):
|
||||
p = x.parent
|
||||
t = x.right
|
||||
x.set_right(t.left)
|
||||
t.set_left(x)
|
||||
if isinstance(p, Tree):
|
||||
p.set_root(t)
|
||||
elif p.left is x:
|
||||
p.set_left(t)
|
||||
else:
|
||||
p.set_right(t)
|
||||
|
||||
|
||||
def insert_fixup(tree, node):
|
||||
if isinstance(node.parent, Tree): # if root
|
||||
node.isBlack = True
|
||||
elif is_black(node.parent):
|
||||
# no fixup needed
|
||||
pass
|
||||
elif not isinstance(node.parent.parent, Tree) and not is_black(uncle(node)):
|
||||
node.parent.parent.isBlack = False
|
||||
node.parent.isBlack = True
|
||||
if sibling(node.parent) is not None:
|
||||
sibling(node.parent).isBlack = True
|
||||
insert_fixup(tree, node.parent.parent)
|
||||
else:
|
||||
if node.parent.parent.left is node.parent:
|
||||
if node.parent.right is node:
|
||||
left_rotate(node.parent)
|
||||
node = node.left
|
||||
right_rotate(node.parent.parent)
|
||||
else:
|
||||
if node.parent.left is node:
|
||||
right_rotate(node.parent)
|
||||
node = node.right
|
||||
left_rotate(node.parent.parent)
|
||||
node.parent.isBlack = True
|
||||
if sibling(node) is not None:
|
||||
sibling(node).isBlack = False
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = [x for x in sys.argv[1:]]
|
||||
T = Tree(Node(int(args[0])))
|
||||
for i in range(1, len(args)):
|
||||
print_tree(T.root)
|
||||
print("\nInsert " + str(args[i]) + ":")
|
||||
insert(T.root, Node(int(args[i])))
|
||||
print_tree(T.root)
|
||||
\end{lstlisting}
|
||||
\subsection{Point B}
|
||||
|
||||
A red-black tree of n distinct elements has an height between $\log(n)$
|
||||
and $2\log(n)$ thanks to the red-black tree invariant. The worst-case insertion
|
||||
complexity is $\log(n)$ since finding the right place to insert is as complex as
|
||||
and $2\log(n)$ (as professor Carzaniga said in class) thanks to the red-black
|
||||
tree invariant. The worst-case insertion complexity is $\log(n)$ since
|
||||
finding the right place to insert is as complex as
|
||||
a regular tree (i.e. logarithmic) and the ``fixup'' operation is logarithmic as
|
||||
well (the tree traversal is logarithmic while operations in each iteration are constant).
|
||||
In asymptotic terms, the uneven height of leaves in the tree does not make a difference
|
||||
|
@ -393,6 +645,7 @@ FUNCTION JOIN-INTERVALS(X)
|
|||
if c == 0:
|
||||
X[2 * n + 1] $\gets$ start
|
||||
X[2 * n + 2] $\gets$ X[i][1]
|
||||
if i < X.length:
|
||||
start $\gets$ X[i+1][1]
|
||||
n $\gets$ n + 1
|
||||
X.length $\gets$ 2 * n
|
||||
|
|
|
@ -107,14 +107,12 @@ def insert_fixup(tree, node):
|
|||
elif is_black(node.parent):
|
||||
# no fixup needed
|
||||
pass
|
||||
elif isinstance(node.parent.parent, Tree):
|
||||
node.parent.isBlack = True
|
||||
elif not is_black(uncle(node)):
|
||||
elif not isinstance(node.parent.parent, Tree) and not is_black(uncle(node)):
|
||||
node.parent.parent.isBlack = False
|
||||
node.parent.isBlack = True
|
||||
if sibling(node.parent) is not None:
|
||||
sibling(node.parent).isBlack = True
|
||||
insert_fixup(tree, node.parent)
|
||||
insert_fixup(tree, node.parent.parent)
|
||||
else:
|
||||
if node.parent.parent.left is node.parent:
|
||||
if node.parent.right is node:
|
||||
|
@ -129,59 +127,6 @@ def insert_fixup(tree, node):
|
|||
node.parent.isBlack = True
|
||||
if sibling(node) is not None:
|
||||
sibling(node).isBlack = False
|
||||
insert_fixup(tree, node.parent)
|
||||
|
||||
|
||||
# Complexity (worst): Theta(n)
|
||||
def search(tree, k):
|
||||
if tree is None:
|
||||
return None
|
||||
elif tree.key == k:
|
||||
return tree
|
||||
elif k < tree.key:
|
||||
return search(tree.left, k)
|
||||
else:
|
||||
return search(tree.right, k)
|
||||
|
||||
|
||||
# Complexity (worst): Theta(n)
|
||||
def min(t):
|
||||
if t is None:
|
||||
return None
|
||||
while t.left is not None:
|
||||
t = t.left
|
||||
return t
|
||||
|
||||
|
||||
# Complexity (worst): Theta(n)
|
||||
def max(t):
|
||||
if t is None:
|
||||
return None
|
||||
while t.right is not None:
|
||||
t = t.right
|
||||
return t
|
||||
|
||||
|
||||
def successor(t):
|
||||
if t.right is not None:
|
||||
return min(t.right)
|
||||
while t.parent is not None:
|
||||
if t.parent.left == t:
|
||||
return t.parent
|
||||
else:
|
||||
t = t.parent
|
||||
return None
|
||||
|
||||
|
||||
def predecessor(t):
|
||||
if t.left is not None:
|
||||
return max(t.left)
|
||||
while t is not None:
|
||||
if t.parent.right == t:
|
||||
return t.parent
|
||||
else:
|
||||
t = t.parent
|
||||
return None
|
||||
|
||||
###############################################################################
|
||||
# Code for printing trees, ignore this
|
179
GA3/tree.py
Executable file
179
GA3/tree.py
Executable file
|
@ -0,0 +1,179 @@
|
|||
#!/usr/bin/env python3
|
||||
# vim: set ts=2 sw=2 et tw=80:
|
||||
|
||||
import sys
|
||||
|
||||
class Node:
|
||||
def __init__(self, k):
|
||||
self.key = k
|
||||
self.left = None
|
||||
self.right = None
|
||||
self.parent = None
|
||||
|
||||
def set_left(self, kNode):
|
||||
kNode.parent = self
|
||||
self.left = kNode
|
||||
|
||||
def set_right(self, kNode):
|
||||
kNode.parent = self
|
||||
self.right = kNode
|
||||
|
||||
|
||||
def search(tree, k):
|
||||
if tree is None:
|
||||
return None
|
||||
elif tree.key == k:
|
||||
return tree
|
||||
elif k < tree.key:
|
||||
return search(tree.left, k)
|
||||
else:
|
||||
return search(tree.right, k)
|
||||
|
||||
|
||||
def insert(t, k):
|
||||
insert_node(t, Node(k))
|
||||
|
||||
|
||||
def insert_node(t, node):
|
||||
if node.key < t.key:
|
||||
if t.left is None:
|
||||
t.set_left(node)
|
||||
else:
|
||||
insert_node(t.left, node)
|
||||
else:
|
||||
if t.right is None:
|
||||
t.set_right(node)
|
||||
else:
|
||||
insert_node(t.right, node)
|
||||
|
||||
|
||||
def root_insert(t, k):
|
||||
if t is None:
|
||||
return k
|
||||
if k.key > t.key:
|
||||
t.set_right(root_insert(t.right, k))
|
||||
return left_rotate(t)
|
||||
else:
|
||||
t.set_left(root_insert(t.left, k))
|
||||
return right_rotate(t)
|
||||
|
||||
|
||||
def unlink_me(node, to_link):
|
||||
if node.parent == None:
|
||||
tr = node
|
||||
node.key = to_link.key
|
||||
node.left = to_link.left
|
||||
node.right = to_link.right
|
||||
return node
|
||||
elif node.parent.left == node:
|
||||
node.parent.left = to_link
|
||||
return to_link
|
||||
else:
|
||||
node.parent.right = to_link
|
||||
return to_link
|
||||
|
||||
|
||||
def delete(t, k):
|
||||
to_delete = search(t, k)
|
||||
if to_delete is None:
|
||||
return
|
||||
elif to_delete.left is None:
|
||||
unlink_me(to_delete, to_delete.right)
|
||||
elif to_delete.right is None:
|
||||
unlink_me(to_delete, to_delete.left)
|
||||
else:
|
||||
if abs(to_delete.left.key - to_delete.key) < abs(to_delete.right.key -
|
||||
to_delete.key):
|
||||
ins = to_delete.right
|
||||
new_branch = unlink_me(to_delete, to_delete.left)
|
||||
insert_node(new_branch, ins)
|
||||
else:
|
||||
ins = to_delete.left
|
||||
new_branch = unlink_me(to_delete, to_delete.right)
|
||||
insert_node(new_branch, ins)
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Code for printing trees, ignore this
|
||||
|
||||
|
||||
class Canvas:
|
||||
def __init__(self, width):
|
||||
self.line_width = width
|
||||
self.canvas = []
|
||||
|
||||
def put_char(self, x, y, c):
|
||||
if x < self.line_width:
|
||||
pos = y * self.line_width + x
|
||||
l = len(self.canvas)
|
||||
if pos < l:
|
||||
self.canvas[pos] = c
|
||||
else:
|
||||
self.canvas[l:] = [' '] * (pos - l)
|
||||
self.canvas.append(c)
|
||||
|
||||
def print_out(self):
|
||||
i = 0
|
||||
for c in self.canvas:
|
||||
sys.stdout.write(c)
|
||||
i = i + 1
|
||||
if i % self.line_width == 0:
|
||||
sys.stdout.write('\n')
|
||||
if i % self.line_width != 0:
|
||||
sys.stdout.write('\n')
|
||||
|
||||
|
||||
def print_binary_r(t, x, y, canvas):
|
||||
max_y = y
|
||||
if t.left is not None:
|
||||
x, max_y, lx, rx = print_binary_r(t.left, x, y + 2, canvas)
|
||||
x = x + 1
|
||||
for i in range(rx, x):
|
||||
canvas.put_char(i, y + 1, '/')
|
||||
|
||||
middle_l = x
|
||||
for c in str(t.key):
|
||||
canvas.put_char(x, y, c)
|
||||
x = x + 1
|
||||
middle_r = x
|
||||
|
||||
if t.right is not None:
|
||||
canvas.put_char(x, y + 1, '\\')
|
||||
x = x + 1
|
||||
x0, max_y2, lx, rx = print_binary_r(t.right, x, y + 2, canvas)
|
||||
if max_y2 > max_y:
|
||||
max_y = max_y2
|
||||
for i in range(x, lx):
|
||||
canvas.put_char(i, y + 1, '\\')
|
||||
x = x0
|
||||
|
||||
return (x, max_y, middle_l, middle_r)
|
||||
|
||||
|
||||
def print_tree(t):
|
||||
print_w(t, 80)
|
||||
|
||||
|
||||
def print_w(t, width):
|
||||
canvas = Canvas(width)
|
||||
print_binary_r(t, 0, 0, canvas)
|
||||
canvas.print_out()
|
||||
|
||||
###############################################################################
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = [x for x in sys.argv[1:]]
|
||||
T = Node(int(args[0]))
|
||||
for i in range(1, len(args)):
|
||||
if args[i] == '|':
|
||||
break
|
||||
print_tree(T)
|
||||
print("\nInsert " + str(args[i]) + ":")
|
||||
insert(T, int(args[i]))
|
||||
for i in range(i+1, len(args)):
|
||||
print_tree(T)
|
||||
print("\nDelete " + str(args[i]) + ":")
|
||||
delete(T, int(args[i]))
|
||||
print_tree(T)
|
||||
|
Reference in a new issue