Graded Assignment 2 - DSA

Claudio Maggioni

March 25, 2019

Contents

1 Exercise 1 2
1.1 Mergesort 2
1.2 Selection sort 3
1.3 Quicksort 3
1.4 Insertion sort 3
2 Exercise 2 4
2.1 Exercise a 4
2.2 Exercise b 4
2.3 Exercise c 5
Listings
1 Sum of two in pseudocode 4
2 Sum of three in pseudocode 4
3 Sum of three in Python 5

1 Exercise 1

1.1 Mergesort

$[5,6,12,8,4,10,3,12,11,1]$
$[5,6,12,8,4][10,3,12,11,1]$
$[5,6,12,8,4]$
$[5,6],[12,8,4]$
$[5,6]$
[5], [6]
[5]
[6]
$[5,6]$
$[12,8,4]$
$[12][8,4]$
[12]
$[8,4]$
[8] , [4]
[8]
[4]
$[4,8]$
[4, 8, 12]
[4, 5, 6, 8, 12]
$[10,3,12,11,1]$
$[10,3],[12,11,1]$
[10], [3]
[10]
[3]
$[3,10]$
[12, 11, 1]
[12], [11, 1]
[12]
[11, 1]
[11], [1]
[11]
[1]
$[1,11]$
$[1,11,12]$
$[1,3,10,11,12]$
$[1,3,4,5,6,8,10,11,12,12]$

1.2 Selection sort

$[4,6,12,8,5,10,3,12,11,1]$ $[3,6,12,8,5,10,4,12,11,1]$ $[1,6,12,8,5,10,4,12,11,3]$ $[1,5,12,8,6,10,4,12,11,3]$ $[1,4,12,8,6,10,5,12,11,3]$ $[1,3,12,8,6,10,5,12,11,4]$
$[1,3,8,12,6,10,5,12,11,4]$
$[1,3,6,12,8,10,5,12,11,4]$
$[1,3,5,12,8,10,6,12,11,4]$
$[1,3,4,12,8,10,6,12,11,5]$
$[1,3,4,8,12,10,6,12,11,5]$
$[1,3,4,6,12,10,8,12,11,5]$
$[1,3,4,5,12,10,8,12,11,6]$
$[1,3,4,5,10,12,8,12,11,6]$
$[1,3,4,5,8,12,10,12,11,6]$
$[1,3,4,5,6,12,10,12,11,8]$
$[1,3,4,5,6,10,12,12,11,8]$
$[1,3,4,5,6,8,12,12,11,10]$
$[1,3,4,5,6,8,11,12,12,10]$
$[1,3,4,5,6,8,10,12,12,11]$
$[1,3,4,5,6,8,10,11,12,12]$
$[1,3,4,5,6,8,10,11,12,12]$

1.3 Quicksort

$[5,6,12,8,4,10,3,12,11,1]$
$[5,6,3,1,4] 8[12,12,11,10]$
[] $1[6,3,4,5]$
[] 3 [5, 4, 6]
$[5,4] 6$ []
[4] 5 []
[4] 5 []
$[4,5] 6$ []
[] $3[4,5,6]$
[] $1[3,4,5,6]$
[10] 11 [12, 12]
[12] 12 []
[12] 12 []
[10] 11 [12, 12]
$[1,3,4,5,6] 8[10,11,12,12]$
$[1,3,4,5,6,8,10,11,12,12]$

1.4 Insertion sort

$[5,6,12,8,4,10,3,12,11,1]$
$[5,6,8,12,4,10,3,12,11,1]$
$[5,6,8,4,12,10,3,12,11,1]$
$[5,6,4,8,12,10,3,12,11,1]$
$[5,4,6,8,12,10,3,12,11,1]$
$[4,5,6,8,12,10,3,12,11,1]$
$[4,5,6,8,10,12,3,12,11,1]$
$[4,5,6,8,10,3,12,12,11,1]$
$[4,5,6,8,3,10,12,12,11,1]$
$[4,5,6,3,8,10,12,12,11,1]$
$[4,5,3,6,8,10,12,12,11,1]$
$[4,3,5,6,8,10,12,12,11,1]$
$[3,4,5,6,8,10,12,12,11,1]$
$[3,4,5,6,8,10,12,11,12,1]$
$[3,4,5,6,8,10,11,12,12,1]$
$[3,4,5,6,8,10,11,12,1,12]$
$[3,4,5,6,8,10,11,1,12,12]$
$[3,4,5,6,8,10,1,11,12,12]$
$[3,4,5,6,8,1,10,11,12,12]$
$[3,4,5,6,1,8,10,11,12,12]$
$[3,4,5,1,6,8,10,11,12,12]$
$[3,4,1,5,6,8,10,11,12,12]$
$[3,1,4,5,6,8,10,11,12,12]$
$[1,3,4,5,6,8,10,11,12,12]$

2 Exercise 2

2.1 Exercise a

The pseudocode for Sum of two can be found in listing 1. The total cost of this algorithm in the worst case is the sum of the worst case of mergesort $(O(n \log (n)))$ and the cost of the worst case in the partition done afterwards (which is equivalent to not finding a sum close to the median, i.e. $2 n=O(n))$. Therefore, the total cost is $\theta(n \log (n))$.

```
FUNCTION SUM-OF-TWO (A, s):
    \(\mathrm{A} \leftarrow \operatorname{mergesort}(\mathrm{A})\)
    \(\mathrm{i} \leftarrow 1\)
    \(j \leftarrow\) A.length
    while \(i<j:\)
        sum \(\leftarrow A_{i}+A_{j}\)
```

```
    if sum = s:
        return TRUE
    elif sum > s:
        j \leftarrow j - 1
    else:
    i}\leftarrowi+
return FALSE
```

Listing 1: Sum of two in pseudocode

2.2 Exercise b

The pseudocode for Sum of three can be found in listing 2. SEARCH-TWO has a time cost of $O(n)$ in the worst case (if no elements are found), and the loop of SEARCH has an added cost of $O(n)$. The total cost in the worst case then, including mergesort, is $n^{2}+n \log (n)=\theta\left(n^{2}\right)$.

```
FUNCTION SEARCH-TWO(A, sum2, i_skip):
    i}\leftarrow
    j}\leftarrow A.length
    while i < j:
        if i = i_skip:
            i}\leftarrowi+
        elif j = i_skip:
            j}\leftarrowj - 1
        else:
            sum }\leftarrow\mp@subsup{A}{i}{}+\mp@subsup{A}{j}{
            if sum = sum2:
                return TRUE
            elif sum > sum2:
                j}\leftarrowj-
            else:
                i}\leftarrow i + 1
    return FALSE
FUNCTION SUM-OF-THREE(A, s):
    A}\leftarrow\mathrm{ mergesort(A)
    l}\leftarrow\mathrm{ A.length
    for i from 1 to l:
```

```
    if SEARCH-TWO(A, s - }\mp@subsup{A}{i}{}\mathrm{ , i):
    return TRUE
return FALSE
```

Listing 2: Sum of three in pseudocode

2.3 Exercise c

The Python code used to implement Sum of three can be found in the listing 3.

```
#!/usr/bin/env python3
import sys
def search_two(A, sum2, i_skip):
    i = 0
    j = len(A) - 1
    while i < j:
        if i == i_skip:
            i = i + 1
        elif j == i_skip:
            j = j - 1
        else:
            cs = A[i] + A[j]
            if cs == sum2:
                return True
            elif cs > sum2:
                j = j - 1
            else:
                i = i + 1
    return False
def sum_of_three(A, sum3):
    A.sort() # assume using mergesort for worst case of O(n*log(n))
    l = len(A)
    for i in range(l):
        if search_two(A, sum3 - A[i], i):
            return True
```

```
    return False
if __name__ == "__main__":
    args = [int(x) for x in sys.argv[1:]]
    print(sum_of_three(args[1:], args[0]))
```

Listing 3: Sum of three in Python

