Contents

1 Exercise 1
1.1 Mergesort

Graded Assignment 2 — DSA

Claudio Maggioni
March 25, 2019

1.2 Selection sort

1.3 Quicksort

1.4 Inmsertion sort

2 Exercise 2
2.1 Exercise a
2.2 Exercise b
2.3 Exercise ¢

Listings
1 Sum of two in pseudocode
2 Sum of three in pseudocode
3 Sum of three in Python 000

W w wNo N

[S2 BT QTSN

W

1 Exercise 1

1.1 Mergesort

(5, 6, 12, 8, 4, 10, 3, 12, 11, 1]
(5, 6, 12, 8, 4] [10, 3, 12, 11, 1]
(5, 6, 12, 8, 4]

[5, 61, [12, 8, 4]

(5, 6]
(51, [6]
[5]

(6]

(5, 6]
[12, 8, 4]
[12] [8, 4]
[12]

(8, 4]
(8], [4]
(8]

[4]

(4, 8]

(4, 8, 12]

[4, 5, 6, 8, 12]
[10, 3, 12, 11, 1]
(10, 31, [12, 11, 1]
(101, [3]

[10]

[3]

[3, 10]

[12, 11, 1]

(121, [11, 1]

[12]

[11, 1]

(111, [1]

[11]

[1]

[1, 11]

[1, 11, 12]

[1, 3, 10, 11, 12]
(1, 3, 4, 5, 6, 8, 10, 11, 12, 12]

1.2 Selection sort

(4,
(3,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,

12, 8,
12, 8,
12, 8
12, 8,
12, 8,

8

3

-

-

-

b

-

-

-
[y
N

-

12,
12,
12,

-
-

-
-

-
-

-
[
N

-

-

-
-

-
-
-

-
-
-

-
-
-

-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

W WWWWwWwwWwwwwwwwwwowwdsxrooo o

T T T R R L R 2 @) B0 o]
o1 o1 01O 01O OO OO OY OO

-
-
-

o

- - -

-

- - -

0 0 0 O O OO0 O U1 O

-

= e e
O N DNDDN

8,

-

-

DO OO OO OO O

-

10, 3,
10, 4,
10,
10,
10,
10,
10,
10,
10,

- - - -

-

- -

-

O 00 0 O O O O 01 O O b b

1.3 Quicksort

(5, 6, 12, 8, 4, 10, 3, 12, 11, 1]
(5, 6, 3, 1, 4] 8 [12, 12, 11, 10]
(1116, 3, 4, 5]
(1 3 1[5, 4, 6]

(5, 4] 6 []
(4] 5 []
(4] 5 [1
[4, 51 6 []

(1 3 [4, 5, 6]
(11 (3, 4, 5, 6]

[10] 11 [12,
[12] 12 []
[12] 12 (]
[10] 11 [12,

12]

12]

12,
12,
12,
12,
12,
12,
12,
12,
12,
12,
12,
12,
12,
12,
12,
12,
12,
12,
12,
12,
11,
11,

11, 1]
11, 1]
11, 3]
11, 3]
11, 3]
11, 4]
11, 4]
11, 4]
11, 4]
11, 5]
11, 5]
11, 5]
11, 6]
11, 6]
11, 6]
11, 8]
11, 8]
11, 10]
12, 10]
12, 11]
12, 12]
12, 12]

(1, 3, 4, 5, 6] 8 [10, 11, 12, 12]
[1, 3, 4, 5, 6, 8, 10, 11, 12, 12]

1.4 Insertion sort

[5, 6, 12, 8, 4, 10, 3, 12, 11, 1]
(5, 6, 8, 12, 4, 10, 3, 12, 11, 1]
(5, 6, 8, 4, 12, 10, 3, 12, 11, 1]
(5, 6, 4, 8, 12, 10, 3, 12, 11, 1]
(5, 4, 6, 8, 12, 10, 3, 12, 11, 1]
(4, 5, 6, 8, 12, 10, 3, 12, 11, 1]
(4, 5, 6, 8, 10, 12, 3, 12, 11, 1]
(4, 5, 6, 8, 10, 3, 12, 12, 11, 1]
(4, 5, 6, 8, 3, 10, 12, 12, 11, 1]
(4, 5, 6, 3, 8, 10, 12, 12, 11, 1]
(4, 5, 3, 6, 8, 10, 12, 12, 11, 1]
(4, 3, 5, 6, 8, 10, 12, 12, 11, 1]
[3, 4, 5, 6, 8, 10, 12, 12, 11, 1]
[3, 4, 5, 6, 8, 10, 12, 11, 12, 1]
(3, 4, 5, 6, 8, 10, 11, 12, 12, 1]
[3, 4, 5, 6, 8, 10, 11, 12, 1, 12]
(3, 4, 5, 6, 8, 10, 11, 1, 12, 12]
[3, 4, 5, 6, 8, 10, 1, 11, 12, 12]
[3, 4, 5, 6, 8, 1, 10, 11, 12, 12]
(3, 4, 5, 6, 1, 8, 10, 11, 12, 12]
(3, 4, 5, 1, 6, 8, 10, 11, 12, 12]
[3, 4, 1, 5, 6, 8, 10, 11, 12, 12]
[3, 1, 4, 5, 6, 8, 10, 11, 12, 12]
[1, 3, 4, 5, 6, 8, 10, 11, 12, 12]

2 Exercise 2

2.1 Exercise a

The pseudocode for Sum of two can be found in listing 1. The total cost of this algorithm
in the worst case is the sum of the worst case of mergesort (O(nlog(n))) and the cost
of the worst case in the partition done afterwards (which is equivalent to not finding a
sum close to the median, i.e. 2n = O(n)). Therefore, the total cost is §(nlog(n)).

FUNCTION SUM-OF-TWO(A, s):
A <+ mergesort(4)
i+ 1
j < A.length

while i < j:
sum <— Az + Aj

if sum = s:
return TRUE
elif sum > s:

j&<=Jj-1
else:
i+ i+ 1

return FALSE

Listing 1: Sum of two in pseudocode

2.2 Exercise b

The pseudocode for Sum of three can be found in listing 2. SEARCH-TWO has a time
cost of O(n) in the worst case (if no elements are found), and the loop of SEARCH has
an added cost of O(n). The total cost in the worst case then, including mergesort, is
n? 4+ nlog(n) = 6(n?).

FUNCTION SEARCH-TWO(A, sum2, i_skip):
i+« 1
j < A.length

while i < j:

if i = i_skip:
i+—i+1

elif j = i_skip:
j=i-1

else:
sum < A; + A;
if sum = sum?2:

return TRUE

elif sum > sum2:

j«<~3-1
else:
i+ 1i+1

return FALSE
FUNCTION SUM-OF-THREE(A, s):
A < mergesort(4)

1 < A.length

for i from 1 to 1:

if SEARCH-TWO(A, s - A;, i):
return TRUE

return FALSE

Listing 2: Sum of three in pseudocode

2.3 Exercise c

The Python code used to implement Sum of three can be found in the listing 3.

#!/usr/bin/env python3

import sys

def search_two(A, sum2, i_skip):
i=20
j = len(A) - 1

while i < j:
if 1 == i_skip:

i=1i+1
elif j == i_skip:
j=3-1
else:
cs = A[i] + A[j]
if cs == sum?2:

return True
elif cs > sum2:

j=3-1
else:
i=1i+1

return False

def sum_of_three(A, sum3):
A.sort() # assume using mergesort for worst case of 0(n*log(n))
1 = 1len(4)

for i in range(l):
if search_two(A, sum3 - A[i], i):
return True

return False

if __name__ == "_ _main__":

args = [int(x) for x in sys.argv[1:]]
print (sum_of_three(args([1:], args[0]))

Listing 3: Sum of three in Python

