Graded Assignment 4 - DSA

Claudio Maggioni

May 26, 2019

Contents

1 Exercise 1 2
2 Exercise 2 3
3 Exercise 3 4
4 Exercise 4 5
4.1 Point 1 5
4.2 Point 2 6
Listings
1 Solution for exercise 1 2
2 Solution for exercise 2 3
3 Solution for exercise 3 4
4 Solution for exercise 4 point 1 5
5 Solution for exercise 4 point 2 6

1 Exercise 1

```
FUNCTION BEST-PATH(G=(V,E), v, w):
    \(\mathrm{P}[\mathrm{V}(\mathrm{G})[0]]=\mathrm{NIL}\)
    for each vertex \(u \in V(G)\) :
        prev_start [u] = NIL
        prev_end [u] = NIL
    prev_start[v] = START (non-NIL)
    prev_end[w] = END (non-NIL)
    HELP-SETUP (G, P, \(\operatorname{Adj}[V(G)[0]], V(G)[0])\)
    \(\mathrm{s}=\mathrm{v}\)
    \(\mathrm{e}=\mathrm{w}\)
    while prev_end[s] is NIL and prev_start[e] is NIL:
        if P [s] is not NIL:
            prev_start[P[s]] = s
            \(\mathrm{s}=\mathrm{P}\) [s]
        if \(P\) [e] is not NIL:
            prev_end \([P[e]]=e\)
            \(\mathrm{e}=\mathrm{P}[\mathrm{e}]\)
    if prev_end[s] is not NIL:
        \(\mathrm{n}=\mathrm{s}\)
    else:
        \(\mathrm{n}=\mathrm{e}\)
    while \(s\) is not v:
        s = prev_start[s]
        prev_end[s] = \(\mathrm{P}[\mathrm{s}]\)
    \(\mathrm{s}=\mathrm{v}\)
    while s ! \(=\mathrm{w}\) :
        print(s)
        s = prev_end[s]
    if v != w:
        print(w)
FUNCTION HELP-SETUP (G=(V,E), P, S, v):
    for each vertex \(u \in S\) :
        \(\mathrm{P}[\mathrm{u}]=\mathrm{v}\)
```

Listing 1: Solution for exercise 1

The $O(n)$ setup happens between line 2 and line 14 . This is mainly needed to initialize some help arrays and define an arbitrary root (and consequent parent relation) on the tree.
The rest of the algorithm walks the tree from the start to the root and from the end to the root concurrently, keeping track of the path taken and stopping when an edge was traversed by both walks. Then, the path memory to the start is reversed and inserted in the path memory for the end in order to obtain a mapping to the next node in the path from v to w. This mapping is then printed. The complexity of this step is $O(\operatorname{dist}(v, w))$, since the number of traversed edges is at most two times the distance from v to w, and the reversing operation at the end requires at most $\operatorname{dist}(v, w)$ steps, as the printing operation.

2 Exercise 2

```
FUNCTION CONNECTED-COMPONENTS(G=(V,E)):
    for each vertex u \in V(G):
        color[u] = WHITE
    c = 0
    for each vertex s \in V(G):
        if color[u] # WHITE:
            continue
        color[s] = GRAY
        Q = \emptyset
        c = c + 1
        ENQUEUE(Q, s)
        while Q = \emptyset:
            u = DEQUEUE(Q)
            for each v \in Adj[u]:
                if color[v] == WHITE:
                        color[v] = GRAY
                        ENQUEUE(Q, v)
            color[u] = BLACK
    return c
```


Listing 2: Solution for exercise 2

The algorithm is simply a modified color-only version of BFS with an extra iteration: using every vertex in the graph as a starting node. If the node was already visited, the color makes this iteration over all vertexes skip to the next vertex. The complexity of this algorithm is $O(|V|+|E|)$ like BFS, since the iterative application to BFS over every connected component will cover every edge and node of the graph exactly once, and the extra check for nodes being which is just another $O(|V|)$ cost, which can be ignored.

3 Exercise 3

Assume data is provided in Graph-like form $G=(V, E)$ where V is the set of butterflies, E is the set of edges, and a relation $o: E \rightarrow$ TRUE, FALSE where FALSE means "same" and true means "different" to determine the the type of observation. Ambiguous observations are not included in $E(G)$ in the first place, so o does not have to be defined for this case.

```
FUNCTION OBSERVATION-HOLDS(G=(V,E), o):
    for each vertex u \in V(G):
        color[u] = WHITE
        species[u] = NIL
    for each vertex u \in V(G):
        if color[u] f= WHITE:
            continue
        species[u] = FALSE
        if not DFS-CHECK-OBSERVATION(species, o, v):
            return FALSE
    return TRUE
FUNCTION DFS-CHECK-OBSERVATION(species, o, v):
    color[u] = GREY
    for each vertex v \in Adj[u]:
        if color[v] == WHITE:
            species[v] = species[u] XOR o(edge (u, v))
            if not DFS-CHECK-OBSERVATION(species, o, v):
                return FALSE
    else:
```

```
24 if species[u] = species[v] XOR o(edge (v, u)) V
25
26
27
28 color[u] = BLACK
29 return TRUE
```

Listing 3: Solution for exercise 3

The code given traverses G using a modified DFS by first assigning an arbitrary species (FALSE) to the first vertex encountered, then by computing the species of the subsequent nodes encountered using the observation mapping $o: E \rightarrow$ TRUE, FALSE. A XOR is used to assign the opposite species (flip the species[...] bit) to the newly discovered node if o (CURRENT NODE, NEW NODE) is "different", and to assign the same species if the observation is "same" ${ }^{1}$.
Paths between already visited vertexes (non-white vertexes) are checked in order to find inconsistencies. Both edge traversal directions are checked in order to handle cases where observation are directed (i.e. $o(e d g e(v, u)) \neq o(e d g e(v, u)))$. If an inconsistency is found, we return FALSE, otherwise we return true.
Note that if the observation graph G is composed by more than one connected component assigning an arbitrary species to the first vertex encountered in each connected component does not compromise the solutions, since we are not asked to find the correct species assignment but we are just asked to find inconsistencies.

4 Exercise 4

4.1 Point 1

We assume the minimum spanning tree T is represented as an adjacency-mapped graph. weight is the weight mapping for every edge in the minimal spanning tree. The other parameters must be given as described in the assignment.

```
1 FUNCTION IS-MST-MINIMAL(T=(V,E), weight, v, w, c):
    P[w] = NIL
    DEFINE-PARENT(T, P, Adj[w], w)
    edge1_w = weight(edge (v, P[v]))
    s = v
    while P[s] f w:
        s = P [s]
    edge2_w = weight(edge (s, w))
```

[^0]```
 return c > edge1_w ^ c > edge2_w
FUNCTION DEFINE-PARENT(G=(V,E), P, S, v):
 for each vertex u G S:
 P[u] = v
 DEFINE-PARENT(G, P, Adj[u] \{v}, u)
```

Listing 4: Solution for exercise 4 point 1

The algorithm works by walking the entire tree with DEFINE-PARENT in order to define a parent relation considering $w$ as the root. Then, this relation is used to define the path between $v$ and $w$, and the weights of the first outgoing edge from $v$ and the final edge to $w$ are memorized in edge1_w and edge2_w. The complexity of this step is $O(|V|)$ since the total number of edges in a tree is linearly dependent to the number of vertices (i.e.: $\left|E_{T}\right|=|V|-1$ ).

Note that if $v$ and $w$ are adjacent then these two values are the same, but this does not compromise the algorithm.
Finally, we check if $(v, w)$ is the the edge with highest weight with respect to edge1 and edge2. If this is the case, then replacing edge1 or edge2 with $(v, w)$ would not give a spanning tree with minimum total weight, and thus we return FALSE. Otherwise, the opposite is true and we return TRUE. Note that this step is constant, so the total complexity is $O(|V|)$.

### 4.2 Point 2

```
FUNCTION MAKE-MST-MINIMAL(T=(V,E), weight, v, w, c):
 if not IS-MST-MINIMAL(T, weight, v, w, c):
 if edge1_w < edge2_w:
 delete edge1 from T
 else:
 delete edge2 from T
 add (v, w) to T
```

Listing 5: Solution for exercise 4 point 2

For what said before, this algorithm updates $T$ to a valid MST and runs in $O\left(\left|V_{T}\right|\right)$ which is always $<O(|E|)$.


[^0]:    ${ }^{1}$ TRUE, FALSE mean "different" and "same" when they are result of $o(\ldots)$. When assigning to species [...], they represent an arbitrary assignment of the two species of butterfly.

