
Graded Assignment 4 – DSA

Claudio Maggioni

May 26, 2019

Contents
1 Exercise 1 2

2 Exercise 2 3

3 Exercise 3 4

4 Exercise 4 5
4.1 Point 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Point 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Listings
1 Solution for exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Solution for exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Solution for exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4 Solution for exercise 4 point 1 . . . . . . . . . . . . . . . . . . . . . . . 5
5 Solution for exercise 4 point 2 . . . . . . . . . . . . . . . . . . . . . . . 6

1



1 Exercise 1

1 FUNCTION BEST-PATH(G=(V,E), v, w):
2 P[V(G)[0]] = NIL
3
4 for each vertex u ∈ V(G):
5 prev_start[u] = NIL
6 prev_end[u] = NIL
7
8 prev_start[v] = START (non-NIL)
9 prev_end[w] = END (non-NIL)

10
11 HELP-SETUP(G, P, Adj[V(G)[0]], V(G)[0])
12
13 s = v
14 e = w
15
16 while prev_end[s] is NIL and prev_start[e] is NIL:
17 if P[s] is not NIL:
18 prev_start[P[s]] = s
19 s = P[s]
20 if P[e] is not NIL:
21 prev_end[P[e]] = e
22 e = P[e]
23
24 if prev_end[s] is not NIL:
25 n = s
26 else:
27 n = e
28
29 while s is not v:
30 s = prev_start[s]
31 prev_end[s] = P[s]
32
33 s = v
34 while s != w:
35 print(s)
36 s = prev_end[s]
37 if v != w:
38 print(w)
39
40 FUNCTION HELP-SETUP(G=(V,E), P, S, v):
41 for each vertex u ∈ S:
42 P[u] = v

2



43 HELP-SETUP(G, P, Adj[u] \ {v}, u)

Listing 1: Solution for exercise 1

The O(n) setup happens between line 2 and line 14. This is mainly needed to initialize
some help arrays and define an arbitrary root (and consequent parent relation) on the
tree.
The rest of the algorithm walks the tree from the start to the root and from the end to
the root concurrently, keeping track of the path taken and stopping when an edge was
traversed by both walks. Then, the path memory to the start is reversed and inserted
in the path memory for the end in order to obtain a mapping to the next node in
the path from v to w. This mapping is then printed. The complexity of this step is
O(dist(v, w)), since the number of traversed edges is at most two times the distance
from v to w, and the reversing operation at the end requires at most dist(v, w) steps,
as the printing operation.

2 Exercise 2

1 FUNCTION CONNECTED-COMPONENTS(G=(V,E)):
2 for each vertex u ∈ V(G):
3 color[u] = WHITE
4
5 c = 0
6
7 for each vertex s ∈ V(G):
8 if color[u] 6= WHITE:
9 continue

10
11 color[s] = GRAY
12 Q = ∅
13 c = c + 1
14 ENQUEUE(Q, s)
15
16 while Q 6= ∅:
17 u = DEQUEUE(Q)
18 for each v ∈ Adj[u]:
19 if color[v] == WHITE:
20 color[v] = GRAY
21 ENQUEUE(Q, v)
22 color[u] = BLACK
23
24 return c

3



Listing 2: Solution for exercise 2

The algorithm is simply a modified color-only version of BFS with an extra iteration:
using every vertex in the graph as a starting node. If the node was already visited,
the color makes this iteration over all vertexes skip to the next vertex. The complexity
of this algorithm is O(|V | + |E|) like BFS, since the iterative application to BFS over
every connected component will cover every edge and node of the graph exactly once,
and the extra check for nodes being which is just another O(|V |) cost, which can be
ignored.

3 Exercise 3
Assume data is provided in Graph-like form G = (V, E) where V is the set of butterflies,
E is the set of edges, and a relation o : E → true, false where false means “same”
and true means “different” to determine the the type of observation. Ambiguous
observations are not included in E(G) in the first place, so o does not have to be
defined for this case.

1 FUNCTION OBSERVATION-HOLDS(G=(V,E), o):
2 for each vertex u ∈ V(G):
3 color[u] = WHITE
4 species[u] = NIL
5
6 for each vertex u ∈ V(G):
7 if color[u] 6= WHITE:
8 continue
9 species[u] = FALSE

10 if not DFS-CHECK-OBSERVATION(species, o, v):
11 return FALSE
12
13 return TRUE
14
15 FUNCTION DFS-CHECK-OBSERVATION(species, o, v):
16 color[u] = GREY
17
18 for each vertex v ∈ Adj[u]:
19 if color[v] == WHITE:
20 species[v] = species[u] XOR o(edge (u, v))
21 if not DFS-CHECK-OBSERVATION(species, o, v):
22 return FALSE
23 else:

4



24 if species[u] 6= species[v] XOR o(edge (v, u)) ∨
25 species[v] 6= species[u] XOR o(edge (u, v)):
26 return FALSE
27
28 color[u] = BLACK
29 return TRUE

Listing 3: Solution for exercise 3

The code given traverses G using a modified DFS by first assigning an arbitrary species
(FALSE) to the first vertex encountered, then by computing the species of the subsequent
nodes encountered using the observation mapping o : E → true, false. A XOR is
used to assign the opposite species (flip the species[. . . ] bit) to the newly discovered
node if o(current node, new node) is “different”, and to assign the same species if
the observation is “same” 1.
Paths between already visited vertexes (non-white vertexes) are checked in order to
find inconsistencies. Both edge traversal directions are checked in order to handle cases
where observation are directed (i.e. o(edge(v, u)) 6= o(edge(v, u))). If an inconsistency
is found, we return FALSE, otherwise we return true.
Note that if the observation graph G is composed by more than one connected com-
ponent assigning an arbitrary species to the first vertex encountered in each connected
component does not compromise the solutions, since we are not asked to find the correct
species assignment but we are just asked to find inconsistencies.

4 Exercise 4

4.1 Point 1
We assume the minimum spanning tree T is represented as an adjacency-mapped graph.
weight is the weight mapping for every edge in the minimal spanning tree. The other
parameters must be given as described in the assignment.

1 FUNCTION IS-MST-MINIMAL(T=(V,E), weight, v, w, c):
2 P[w] = NIL
3 DEFINE-PARENT(T, P, Adj[w], w)
4 edge1_w = weight(edge (v, P[v]))
5 s = v
6 while P[s] 6= w:
7 s = P[s]
8 edge2_w = weight(edge (s, w))

1true, false mean “different” and “same” when they are result of o(. . .). When assigning to
species[...], they represent an arbitrary assignment of the two species of butterfly.

5



9 return c > edge1_w ∧ c > edge2_w
10
11 FUNCTION DEFINE-PARENT(G=(V,E), P, S, v):
12 for each vertex u ∈ S:
13 P[u] = v
14 DEFINE-PARENT(G, P, Adj[u] \ {v}, u)

Listing 4: Solution for exercise 4 point 1

The algorithm works by walking the entire tree with DEFINE-PARENT in order to define
a parent relation considering w as the root. Then, this relation is used to define the
path between v and w, and the weights of the first outgoing edge from v and the final
edge to w are memorized in edge1 w and edge2 w. The complexity of this step is O(|V |)
since the total number of edges in a tree is linearly dependent to the number of vertices
(i.e.: |ET | = |V | − 1).
Note that if v and w are adjacent then these two values are the same, but this does not
compromise the algorithm.
Finally, we check if (v, w) is the the edge with highest weight with respect to edge1
and edge2. If this is the case, then replacing edge1 or edge2 with (v, w) would not
give a spanning tree with minimum total weight, and thus we return FALSE. Otherwise,
the opposite is true and we return TRUE. Note that this step is constant, so the total
complexity is O(|V |).

4.2 Point 2

1 FUNCTION MAKE-MST-MINIMAL(T=(V,E), weight, v, w, c):
2 if not IS-MST-MINIMAL(T, weight, v, w, c):
3 if edge1_w < edge2_w:
4 delete edge1 from T
5 else:
6 delete edge2 from T
7 add (v, w) to T

Listing 5: Solution for exercise 4 point 2

For what said before, this algorithm updates T to a valid MST and runs in O(|VT |)
which is always < O(|E|).

6


