This repository has been archived on 2021-10-31. You can view files and clone it, but cannot push or open issues or pull requests.
DSA/GA2/ga2.tex
2019-03-24 17:29:32 +01:00

145 lines
3.3 KiB
TeX

% vim: set ts=2 sw=2 tw=80 et:
\documentclass[12pt]{article}
\usepackage[margin=3cm]{geometry}
\usepackage{xcolor}
\usepackage{lmodern}
\usepackage{listings}
\title{Graded Assignment 2 -- DSA}
\author{Claudio Maggioni}
% listings configuration
\lstset{
basicstyle=\small\ttfamily,
frame=shadowbox,
rulesepcolor=\color{black},
columns=fullflexible,
commentstyle=\color{gray},
keywordstyle=\bfseries,
keywords={,while,if,elif,else,FUNCTION,return,for,from,to,TRUE,FALSE},
mathescape=true,
aboveskip=2em,
captionpos=b,
abovecaptionskip=1em,
belowcaptionskip=1em
}
\begin{document}
\maketitle
\tableofcontents
\lstlistoflistings
\newpage
\section{Exercise 2}
\subsection{Exercise a}
The pseudocode for \textit{Sum of two} can be found in listing \ref{lst:sum2}.
The total cost of this algorithm in the worst case is the sum of the worst case
of mergesort ($O(n log(n))$) and the cost of the worst case in the partition
done afterwards (which is equivalent to not finding the sum, i.e. $2 n =
O(n)$). Therefore, the total cost is $\theta(n log(n))$.
\begin{lstlisting}[caption=Sum of two in pseudocode, label={lst:sum2}]
FUNCTION SUM-OF-TWO(A, s):
A $\gets$ mergesort(A)
i $\gets$ 1
j $\gets$ A.length
while i < j:
sum $\gets$ $A_i$ + $A_j$
if sum = s:
return TRUE
elif sum > s:
j $\gets$ j - 1
else:
i $\gets$ i + 1
return FALSE
\end{lstlisting}
\subsection{Exercise b}
The pseudocode for \textit{Sum of three} can be found in listing \ref{lst:sum3}.
\textsc{search-two} has a time cost of $O(n)$ in the worst case (if no elements
are found), and the loop of \textsc{search} has an added cost of $O(n)$. The
total cost in the worst case then, including mergesort, is $n^2 + n log(n)
= \theta(n^2)$.
\begin{lstlisting}[caption=Sum of three in pseudocode, label={lst:sum3}]
FUNCTION SEARCH-TWO(A, sum2, i_skip):
i $\gets$ 1
j $\gets$ A.length
while i < j:
if i = i_skip:
i $\gets$ i + 1
elif j = i_skip:
j $\gets$ j - 1
else:
sum $\gets$ $A_i$ + $A_j$
if sum = sum2:
return TRUE
elif sum > sum2:
j $\gets$ j - 1
else:
i $\gets$ i + 1
return FALSE
FUNCTION SUM-OF-THREE(A, s):
A $\gets$ mergesort(A)
l $\gets$ A.length
for i from 1 to l:
if SEARCH-TWO(A, s - $A_i$, i):
return TRUE
return FALSE
\end{lstlisting}
\subsection{Exercise c}
The \textit{Python} code used to implement \textit{Sum of three} can be found in
the listing \ref{lst:sum3py}.
\begin{lstlisting}[caption=Sum of three in Python, label={lst:sum3py},%
language=python]
#!/usr/bin/env python3
import sys
def search_two(A, sum2, i_skip):
i = 0
j = len(A) - 1
while i < j:
if i == i_skip:
i = i + 1
elif j == i_skip:
j = j - 1
else:
cs = A[i] + A[j]
if cs == sum2:
return True
elif cs > sum2:
j = j - 1
else:
i = i + 1
return False
def sum_of_three(A, sum3):
A.sort() # assume using mergesort for worst case of O(n*log(n))
l = len(A)
for i in range(l):
if search_two(A, sum3 - A[i], i):
return True
return False
if __name__ == "__main__":
args = [int(x) for x in sys.argv[1:]]
print(sum_of_three(args[1:], args[0]))
\end{lstlisting}
\end{document}