
DrBrainfuck – Documentation
Tommaso Rodolfo Masera Claudio Maggioni

December 2018

Contents
1 User Level 2

1.1 Brief Introduction to Brainf*ck . 2
1.2 About the Interpreter . 2

1.2.1 Running the Program . 2
1.2.2 Current Features . 2

2 Developer Level 3
2.1 Interpreter Execution . 3

2.1.1 Program State . 3
2.1.2 Execute Function . 3
2.1.3 Interpreter Execution . 4

1 User Level
1.1 Brief Introduction to Brainf*ck
Brainf*ck is a programming language supposed to resemble a working Turing ma-
chine and it consists of only eight commands.

A program written in Brainf*ck makes use of sequences of these commands and
said sequence might actually have other characters in between that are promptly
ignored and treated as comments instead.

The way Brainf*ck works includes a program and an instruction pointer, an array
of byte cells initialized to 0 as well as a movable data pointer, starting from the
leftmost position, to address such cells with the given instructions. What’s more
Brainf*ck makes use of the ASCII encoding for inputs and outputs.

The eight commands Brainf*ck is based on are the following:

> : increments the data pointer to point the cell to the right;

< : decrements the data pointer to point the cell to the left;

+ : increases by one the byte at the data pointer;

- : decreases by one the byte at the data pointer;

. : prints as output the byte at the data pointer;

, : asks for an input to store in the byte at the data pointer;

[: if the byte at the data pointer is zero, jumps forward to the command
after the matching] command instead of advancing the instruction pointer to
the next instruction;

] : if the byte at the data pointer is non-zero, jumps backward to the command
before the matching [command instead of advancing the instruction pointer
to the next instruction;

1.2 About the Interpreter
The interpreter is written in Racket and was developed using DrRacket 7.0

1.2.1 Running the Program

You have two different options to run the program: a GUI and a CLI.
For the GUI open the “gui.rkt” file from either the ‘DrRacket’ environment or

the Racket CLI tool.
As for the CLI version of the program you should use the “./cli.rkt” command

followed by your “filename.bf” Brainf*ck file that you want to execute.

1

1.2.2 Current Features

The current status of the project includes a fully functioning Brainf*ck interpreter
with a GUI capable of displaying input and output of the program.

The GUI includes a live display of a Turing machine tape as the program runs.
The program is also supported via command line as well as allowing direct user

input in the Brainf*ck program while it runs.

2 Developer Level
2.1 Interpreter Execution
2.1.1 Program State

The entire program revolves around the main struct defined as:
; A ProgState is a (prog-state tape dp output program ip) where:
; - tape: Tape
; - dp: DataPointer
; - tape-len: Nat
; - output: String
; - program: Program
; - ip: InstructionPointer
; - error: Option<String>
; Interpretation: the current state of execution of a brainf*ck program.

(struct prog-state (tape dp tape-len output program ip error)
And, likewise, each term in the struct has its own type definition:

; A Byte is an Int between 0 and 255
; Interpretation: a byte in decimal notation.

; A Tape is a NEList<Byte>
; Interpretation: a tape in brainf*ck's Turing machine.

; A DataPointer (DP) is a NonNegInt
; Interpretation: a data pointer in the Brainf*ck language in a tape.

; A Program is a String of:
; - ">" (tape-right)
; - "<" (tape-left)
; - "+" (add1)
; - "-" (sub1)
; - "." (out)
; - "," (in)
; - "[" (loop-start)
; - "]" (loop-end)
; Interpretation: the brainf*ck program.

2

; A InstructionPointer (IP) is a NonNegInt
; Interpretation: a pointer to the instruction to execute.

; An ErrorCode is one of:
; - 'error1 (Interp: negative tape position when <)
; - 'error2 (Interp: non-matching [)
; - 'error3 (Interp: non-matching])
; Interpretation: an error code for the bf interpreter.

2.1.2 Execute Function

The main aspects of the execute function, other than executing the program, in-
clude:

- The world state previously defined as a program state

- An asynchronous function call to get the user input when required by the
program

- A callback function call defined as “done” which is called when an instruction
is executed and that returns #false when the program is at its last instruction.

2.1.3 Interpreter Execution

In order to parse the Brainf*ck instructions correctly and ignore all other characters
in a Brainf*ck file, the execute function requires a cond to give a condition to each
valid Brainf*ck character and call the right function.

List of helper functions for execute:

exec-tape-right:
ProgState -> ProgState
Given a ProgState, returns a new ProgState with the > instruction executed.

exec-tape-left:
ProgState -> ProgState
Given a ProgState, returns a new ProgState with the < instruction executed.

exec-add1:
ProgState -> ProgState
Given a ProgState, returns a new ProgState with the + instruction executed.

exec-sub1:
ProgState -> ProgState
Given a ProgState, returns a new ProgState with the − instruction executed.

exec-out:
ProgState -> ProgState
Given a ProgState, returns a new ProgState with the . instruction executed.

3

exec-loop-start:
ProgState -> ProgState
Given a ProgState, returns a new ProgState with the [instruction executed.

exec-loop-end:
ProgState -> ProgState
Given a ProgState, returns a new ProgState with the] instruction executed.

exec-in:
ProgState ((Byte -> _) -> _) (ProgState -> _) -> _
Given a ProgState, a function that takes a callback function requiring a Byte
and a function which takes the new ProgState, calls done with the input
provided by get-input (provided by the call to the callback given in get-input).

4

