2022-09-26 17:35:06 +00:00
|
|
|
\documentclass[unicode,11pt,a4paper,oneside,numbers=endperiod,openany]{scrartcl}
|
|
|
|
|
|
|
|
\input{assignment.sty}
|
2022-10-05 08:03:17 +00:00
|
|
|
\usepackage{float}
|
|
|
|
\usepackage{subcaption}
|
|
|
|
\usepackage{graphicx}
|
|
|
|
\usepackage{tikz}
|
2022-10-06 19:52:51 +00:00
|
|
|
\usetikzlibrary{decorations.markings}
|
|
|
|
\usepackage{url}
|
|
|
|
\hypersetup{pdfborder = {0 0 0}}
|
|
|
|
\usepackage{xcolor}
|
2022-10-05 09:14:40 +00:00
|
|
|
\usepackage{multirow}
|
2022-10-05 18:04:15 +00:00
|
|
|
\usepackage{makecell}
|
|
|
|
\usepackage{booktabs}
|
|
|
|
\usepackage[nomessages]{fp}
|
2022-10-05 08:03:17 +00:00
|
|
|
|
|
|
|
\begin{document}
|
2022-09-26 17:35:06 +00:00
|
|
|
|
|
|
|
\setassignment
|
|
|
|
\setduedate{12.10.2022 (midnight)}
|
|
|
|
|
2022-10-06 19:52:51 +00:00
|
|
|
\serieheader{High-Performance Computing Lab}{2022}{Student: Claudio Maggioni}{
|
|
|
|
Discussed with: --}{Solution for Project 1}{}
|
2022-09-26 17:35:06 +00:00
|
|
|
\newline
|
|
|
|
|
2022-10-05 18:04:15 +00:00
|
|
|
%\assignmentpolicy
|
|
|
|
%In this project you will practice memory access optimization,
|
|
|
|
%performance-oriented programming, and OpenMP parallelizaton on the ICS Cluster.
|
|
|
|
|
|
|
|
\tableofcontents
|
2022-09-26 17:35:06 +00:00
|
|
|
|
|
|
|
\section{Explaining Memory Hierarchies \punkte{25}}
|
|
|
|
|
2022-09-27 08:39:48 +00:00
|
|
|
\subsection{Memory Hierarchy Parameters of the Cluster}
|
2022-10-05 18:04:15 +00:00
|
|
|
By invoking \texttt{likwid-topology} for the cache topology and \texttt{free -g}
|
|
|
|
for the amount of primary memory, the following memory hierarchy parameters are
|
|
|
|
found:
|
2022-09-26 17:35:06 +00:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tabular}{llll}
|
|
|
|
Main memory & 62 GB \\
|
|
|
|
L3 cache & 25 MB per socket \\
|
|
|
|
L2 cache & 256 kB per core \\
|
|
|
|
L1 cache & 32 kB per core
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
All values are reported using base 2 IEC byte units. The cluster has 2 sockets
|
|
|
|
and a total of 20 cores (10 per socket). The cache topology diagram reported by
|
2022-10-05 09:14:40 +00:00
|
|
|
\texttt{likwid-topology -g} is shown in Figure \ref{fig:topo}.
|
2022-09-26 17:35:06 +00:00
|
|
|
|
2022-10-05 18:04:15 +00:00
|
|
|
\pagebreak[4]
|
|
|
|
|
2022-10-05 09:14:40 +00:00
|
|
|
\begin{figure}[t]
|
|
|
|
\begin{center}
|
|
|
|
Socket 0:\vspace{0.3cm}
|
|
|
|
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
|
|
|
|
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\\hline
|
|
|
|
32 kB & 32 kB & 32 kB & 32 kB & 32 kB & 32 kB & 32 kB & 32 kB & 32
|
|
|
|
kB & 32 kB \\\hline
|
|
|
|
256 kB & 256 kB & 256 kB & 256 kB & 256 kB & 256 kB & 256 kB & 256
|
|
|
|
kB & 256 kB & 256 kB \\\hline
|
|
|
|
\multicolumn{10}{|c|}{25 MB} \\\hline
|
|
|
|
\end{tabular}\vspace{0.8cm}\\
|
|
|
|
Socket 1:\vspace{0.3cm}
|
|
|
|
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
|
|
|
|
\hline 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\\hline
|
|
|
|
32 kB & 32 kB & 32 kB & 32 kB & 32 kB & 32 kB & 32 kB & 32 kB & 32
|
|
|
|
kB & 32 kB \\\hline
|
|
|
|
256 kB & 256 kB & 256 kB & 256 kB & 256 kB & 256 kB & 256 kB & 256
|
|
|
|
kB & 256 kB & 256 kB \\\hline
|
|
|
|
\multicolumn{10}{|c|}{25 MB} \\\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
\caption{Cache topology diagram as outputted by \texttt{likwid-topology -g}.
|
|
|
|
Byte sizes all in IEC units.}
|
|
|
|
\label{fig:topo}
|
|
|
|
\end{figure}
|
2022-09-26 17:35:06 +00:00
|
|
|
|
2022-09-27 08:39:48 +00:00
|
|
|
\subsection{Memory Access Pattern of \texttt{membench.c}}
|
|
|
|
|
2022-10-05 18:04:15 +00:00
|
|
|
\begin{figure}[t]
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\tikzset{->-/.style={decoration={
|
|
|
|
markings,
|
|
|
|
mark=at position .75 with {\arrow{>}}},postaction={decorate}}};
|
|
|
|
|
|
|
|
\draw (0,0) grid (5,1);
|
|
|
|
\draw [dashed] (5,0) -- (5.5,0);
|
|
|
|
\draw [dashed] (5,1) -- (5.5,1);
|
|
|
|
\draw [dashed] (6.5,0) -- (7,0);
|
|
|
|
\draw [dashed] (6.5,1) -- (7,1);
|
|
|
|
\draw (7,0) grid (12,1);
|
|
|
|
|
|
|
|
\foreach \r in {0,1,...,4}{
|
|
|
|
\fill (\r + 0.5,0.5) circle [radius=2pt];
|
|
|
|
\draw[->-] (\r-0.5,0.5) to[bend left] (\r+0.5,0.5);
|
|
|
|
\draw (\r + 0.5, -0.5) node {$\r$};
|
|
|
|
}
|
|
|
|
\draw[->-] (4.5,0.5) to[bend left] (5.5,0.5);
|
|
|
|
\foreach \r in {7,8,...,11}{
|
|
|
|
\fill (\r + 0.5,0.5) circle [radius=2pt];
|
|
|
|
\FPeval{l}{round(\r + 128 - 12, 0)}
|
|
|
|
\draw[->-] (\r-0.5,0.5) to[bend left] (\r+0.5,0.5);
|
|
|
|
\draw (\r + 0.5, -0.5) node {$\l$};
|
|
|
|
}
|
|
|
|
|
|
|
|
\draw (0,-3) grid (3,-2);
|
|
|
|
\draw [dashed] (3,-2) -- (3.5,-2);
|
|
|
|
\draw [dashed] (3,-3) -- (3.5,-3);
|
|
|
|
\draw [dashed] (4,-2) -- (4.5,-2);
|
|
|
|
\draw [dashed] (4,-3) -- (4.5,-3);
|
|
|
|
\draw (4.5,-2) -- (7.5,-2);
|
|
|
|
\draw (4.5,-3) -- (7.5,-3);
|
|
|
|
\foreach \r in {4.5,5.5,...,7.5}{
|
|
|
|
\draw (\r,-3) -- (\r,-2);
|
|
|
|
}
|
|
|
|
\draw [dashed] (7.5,-2) -- (8,-2);
|
|
|
|
\draw [dashed] (7.5,-3) -- (8,-3);
|
|
|
|
\draw [dashed] (8.5,-2) -- (9,-2);
|
|
|
|
\draw [dashed] (8.5,-3) -- (9,-3);
|
|
|
|
\draw (9,-3) grid (12,-2);
|
|
|
|
|
|
|
|
\fill (0.5,-2.5) circle [radius=2pt];
|
|
|
|
\fill (6,-2.5) circle [radius=2pt];
|
|
|
|
\fill (11.5,-2.5) circle [radius=2pt];
|
|
|
|
\foreach \r in {0,1,2}{
|
|
|
|
\draw (\r + 0.5, -3.5) node {$\r$};
|
|
|
|
}
|
|
|
|
\foreach \r in {9,10,11}{
|
|
|
|
\FPeval{l}{round(\r - 12, 0)}
|
|
|
|
\draw (\r + 0.5, -3.5) node {\tiny $2^{20} \l$};
|
|
|
|
}
|
|
|
|
\foreach \r in {4.5,5.5}{
|
|
|
|
\FPeval{l}{round(\r - 6.5, 0)}
|
|
|
|
\draw (\r + 0.5, -3.5) node {\tiny $2^{10} \l$};
|
|
|
|
}
|
|
|
|
\draw (7,-3.5) node {\tiny $2^{10}$};
|
|
|
|
\draw[->-] (-0.5,-2.5) to[bend left] (0.5,-2.5);
|
|
|
|
\draw[->-] (0.5,-2.5) to[bend left] (6,-2.5);
|
|
|
|
\draw[->-] (6,-2.5) to[bend left] (11.5,-2.5);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
\caption{Memory access patterns of \texttt{membench.c} for \texttt{csize =
|
|
|
|
128} and \texttt{stride = 1} (above) and for \texttt{csize = $2^{20}$} and
|
|
|
|
\texttt{stride = $2^{10}$} (below)}
|
|
|
|
\label{fig:access}
|
|
|
|
\end{figure}
|
|
|
|
|
2022-09-27 08:39:48 +00:00
|
|
|
The benchmark \texttt{membench.c} measures the average time of repeated read and
|
|
|
|
write overations across a set of indices of a stack-allocated array of 32-bit
|
|
|
|
signed integers. The indices vary according to the access pattern used, which in
|
|
|
|
turn is defined by two variables, \texttt{csize} and \texttt{stride}.
|
|
|
|
\texttt{csize} is an upper bound on the index value, i.e. (one more of) the
|
|
|
|
highest index used to access the array in the pattern. \texttt{stride}
|
|
|
|
determines the difference between array indexes over access iterations, i.e. a
|
|
|
|
\texttt{stride} of 1 will access every array index, a \texttt{stride} of 2 will
|
|
|
|
skip every other index, a \texttt{stride} of 4 will access one index then skip 3
|
|
|
|
and so on and so forth.
|
|
|
|
|
|
|
|
Therefore, for \texttt{csize = 128} and \texttt{stride = 1} the array will
|
|
|
|
access all indexes between 0 and 127 sequentially, and for \texttt{csize =
|
|
|
|
$2^{20}$} and \texttt{stride = $2^{10}$} the benchmark will access index 0, then
|
2022-10-05 18:04:15 +00:00
|
|
|
index $2^{10}-1$, and finally index $2^{20}-1$. The access patterns for these
|
|
|
|
two configurations are shown visually in Figure \ref{fig:access}.
|
2022-09-27 08:39:48 +00:00
|
|
|
|
|
|
|
\subsection{Analyzing Benchmark Results}
|
|
|
|
|
2022-10-05 08:03:17 +00:00
|
|
|
\begin{figure}[t]
|
|
|
|
\begin{subfigure}{0.5\textwidth}
|
|
|
|
\includegraphics[width=\textwidth]{generic_macos.pdf}
|
|
|
|
\caption{Personal laptop}
|
|
|
|
\label{fig:mem:laptop}
|
|
|
|
\end{subfigure}
|
|
|
|
\begin{subfigure}{0.5\textwidth}
|
|
|
|
\includegraphics[width=\textwidth]{generic_cluster.pdf}
|
|
|
|
\caption{Cluster}
|
|
|
|
\label{fig:mem:cluster}
|
|
|
|
\end{subfigure}
|
|
|
|
\caption{Results of the \texttt{membench.c} benchmark for both my personal
|
|
|
|
laptop (in Figure \ref{fig:mem:laptop}) and the cluster (in Figure
|
|
|
|
\ref{fig:mem:cluster}).}
|
|
|
|
\label{fig:mem}
|
|
|
|
\end{figure}
|
2022-09-27 08:39:48 +00:00
|
|
|
|
2022-10-05 08:03:17 +00:00
|
|
|
The \texttt{membench.c} benchmark results for my personal laptop (Macbook Pro
|
|
|
|
2018 with a Core i7-8750H CPU) and the cluster are shown in figure
|
|
|
|
\ref{fig:mem}.
|
2022-09-27 08:39:48 +00:00
|
|
|
|
|
|
|
The memory access graph for the cluster's benchmark results shows that temporal
|
|
|
|
locality is best for small array sizes and for small \texttt{stride} values.
|
|
|
|
In particular, for array memory sizes of 16MB or lower (\texttt{csize} of $4
|
|
|
|
\cdot 2^{20}$ or lower) and \texttt{stride} values of 2048 or lower the mean
|
|
|
|
read+write time is less than 10 nanoseconds. Temporal locality is worst for
|
|
|
|
large sizes and strides, although the largest values of \texttt{stride} for each
|
|
|
|
size (like \texttt{csize / 2} and \texttt{csize / 4}) achieve better mean times
|
|
|
|
due to the few elements accessed in the pattern (this observation is also valid
|
|
|
|
for the largest strides of each size series shown in the graph).
|
2022-10-06 19:52:51 +00:00
|
|
|
\marginpar[right text]{\color{white}\url{https://youtu.be/JzJlzGaQFoc}}
|
2022-09-27 08:39:48 +00:00
|
|
|
|
2022-09-26 17:35:06 +00:00
|
|
|
\section{Optimize Square Matrix-Matrix Multiplication \punkte{60}}
|
|
|
|
|
2022-10-05 08:03:17 +00:00
|
|
|
The file \texttt{matmult/dgemm-blocked.c} contains a C implementation of the
|
|
|
|
blocked matrix multiplication algorithm presented in the project. Other than
|
|
|
|
implementing the pseudocode, my implementation:
|
2022-09-26 17:35:06 +00:00
|
|
|
|
2022-10-05 08:03:17 +00:00
|
|
|
\begin{figure}[t]
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\fill[blue!60!white] (4,0) rectangle (5,-2);
|
|
|
|
\fill[blue!40!white] (4,-2) rectangle (5,-4);
|
|
|
|
\fill[blue!60!white] (0,-4) rectangle (2,-5);
|
|
|
|
\fill[blue!40!white] (2,-4) rectangle (4,-5);
|
|
|
|
\fill[green!40!white] (4,-4) rectangle (5,-5);
|
|
|
|
\draw[step=1,gray,very thin] (0,0) grid (5,-5);
|
|
|
|
\draw[step=2] (0,0) grid (5,-5);
|
|
|
|
\draw[step=5] (0,0) grid (5,-5);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
\caption{Result of the block division process of a square matrix of size 5
|
|
|
|
using a block size of 2. The 2-by-1 and 1-by-2 rectangular remainders are
|
|
|
|
shown in blue and the square matrix of remainder size (i.e. 1) is shown in
|
|
|
|
green.}
|
|
|
|
\label{fig:matrix}
|
|
|
|
\end{figure}
|
|
|
|
|
|
|
|
\begin{itemize}
|
|
|
|
\item Handles the edge cases related to the ``remainders'' in the matrix
|
|
|
|
block division, i.e. when the division between the size of the matrix
|
|
|
|
and the block size yields a remainder. Assuming only squared matrices
|
|
|
|
are multiplied through the algorithm (as in the test suite provided) the
|
|
|
|
block division could yield rectangular matrix blocks located in the last
|
|
|
|
rows and columns of each matrix, and the bottom-right corner of the
|
|
|
|
matrix will be contained in a square matrix block of the size of the
|
|
|
|
remainder. The result of this process is shown in Figure
|
|
|
|
\ref{fig:matrix};
|
|
|
|
\item Converts matrix A into row major format. As shown in Figure
|
|
|
|
\ref{fig:iter}, by having A in row major format and B in column major
|
|
|
|
format, iterations across matrix block in the inner most loop of the
|
|
|
|
algorithm (the one calling \textit{naivemm}) cache hits are maximised by
|
|
|
|
achieving space locality between the blocks used;
|
|
|
|
\item Caches the result of each innermost iteration into a temporary matrix
|
|
|
|
of block size before storing it into matrix C. This achieves better
|
|
|
|
space locality when \textit{naivemm} needs to store values in matrix C.
|
|
|
|
The block size temporary matrix has virtually no stride and thus cache
|
|
|
|
hits are maximised. The copy operation is implemented with bulk copy
|
|
|
|
\texttt{memcpy} calls.
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
\begin{figure}[t]
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\node[align=center] at (2.5,0.5) {Matrix A};
|
|
|
|
\fill[orange!10!white] (0,0) rectangle (2,-2);
|
|
|
|
\fill[orange!25!white] (2,0) rectangle (4,-2);
|
|
|
|
\fill[orange!40!white] (4,0) rectangle (5,-2);
|
|
|
|
|
|
|
|
\draw[step=1,gray,very thin] (0,0) grid (5,-5);
|
|
|
|
\draw[step=2,black,thick] (0,0) grid (5,-5);
|
|
|
|
\draw[step=5,black,thick] (0,0) grid (5,-5);
|
|
|
|
|
|
|
|
\draw[-to,step=1,red,very thick] (0.5,-0.5) -- (4.5,-0.5);
|
|
|
|
\draw[-to,step=1,red,very thick] (0.5,-1.5) -- (4.5,-1.5);
|
|
|
|
\draw[-to,step=1,red,very thick] (0.5,-2.5) -- (4.5,-2.5);
|
|
|
|
\draw[-to,step=1,red,very thick] (0.5,-3.5) -- (4.5,-3.5);
|
|
|
|
\draw[-to,step=1,red,very thick] (0.5,-4.5) -- (4.5,-4.5);
|
|
|
|
|
|
|
|
\node[align=center] at (8.5,0.5) {Matrix B};
|
|
|
|
\fill[orange!10!white] (6,0) rectangle (8,-2);
|
|
|
|
\fill[orange!25!white] (6,-2) rectangle (8,-4);
|
|
|
|
\fill[orange!40!white] (6,-4) rectangle (8,-5);
|
|
|
|
|
|
|
|
\draw[step=1,gray,very thin] (6,0) grid (11,-5);
|
|
|
|
\draw[step=2,black,thick] (6,0) grid (11,-5);
|
|
|
|
\draw[step=5,black,thick] (6,0) grid (11,-5);
|
|
|
|
\draw[black,thick] (11,0) -- (11,-5);
|
|
|
|
|
|
|
|
\draw[-to,step=1,red,very thick] (6.5,-0.5) -- (6.5,-4.5);
|
|
|
|
\draw[-to,step=1,red,very thick] (7.5,-0.5) -- (7.5,-4.5);
|
|
|
|
\draw[-to,step=1,red,very thick] (8.5,-0.5) -- (8.5,-4.5);
|
|
|
|
\draw[-to,step=1,red,very thick] (9.5,-0.5) -- (9.5,-4.5);
|
|
|
|
\draw[-to,step=1,red,very thick] (10.5,-0.5) -- (10.5,-4.5);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
\caption{Inner most loop iteration of the blocked GEMM algorithm across
|
|
|
|
matrices A and B. The red lines represent the ``majorness'' of each matrix
|
|
|
|
(A is converted by the algorithm in row-major form, while B is given and
|
|
|
|
used in column-major form). The shades of orange represent the blocks used
|
|
|
|
in each iteration.}
|
|
|
|
\label{fig:iter}
|
|
|
|
\end{figure}
|
|
|
|
|
|
|
|
The results of the matrix multiplication benchmark for the naive, blocked, and
|
2022-10-05 18:04:15 +00:00
|
|
|
BLAS implementations are shown in Figure \ref{fig:bench} as a graph of GFlop/s
|
|
|
|
over matrix size or in Figure \ref{fig:benchtab} as a table. The blocked
|
|
|
|
implementation achieves on average 50\% more FLOPS than the naive
|
2022-10-05 08:30:24 +00:00
|
|
|
implementation thanks to the optimisations in space and temporal cache locality
|
|
|
|
described. However, the blocked implementation achives less than a tenth of
|
|
|
|
FLOPS compared to Intel MKL BLAS based one due to the microarchitecture
|
|
|
|
optimization the latter one is able to exploit.
|
2022-10-05 08:03:17 +00:00
|
|
|
|
|
|
|
\begin{figure}[t]
|
|
|
|
\includegraphics[width=\textwidth]{timing.pdf}
|
2022-10-05 18:04:15 +00:00
|
|
|
\caption{GFlop/s per matrix size of the matrix multiplication benchmark for the naive,
|
|
|
|
blocked, and BLAS implementations. The Y-axis is log-scaled.}
|
2022-10-05 08:03:17 +00:00
|
|
|
\label{fig:bench}
|
|
|
|
\end{figure}
|
2022-09-26 17:35:06 +00:00
|
|
|
|
2022-10-05 18:04:15 +00:00
|
|
|
\begin{figure}[t]
|
|
|
|
\begin{center}
|
|
|
|
\begin{tabular}{c|cc|cc|cc}
|
|
|
|
\toprule
|
|
|
|
& \multicolumn{2}{c|}{Naive} & \multicolumn{2}{c|}{Blocked} &
|
|
|
|
\multicolumn{2}{c}{BLAS} \\
|
|
|
|
\makecell{Size} & \makecell{MFLOPS} &
|
|
|
|
\makecell{\% CPU} & \makecell{MFLOPS} &
|
|
|
|
\makecell{\% CPU} & \makecell{MFLOPS} &
|
|
|
|
\makecell{\% CPU} \\
|
|
|
|
\midrule
|
|
|
|
31 & 2393.33 & 6.50 & 2112.63 & 5.74 & 23449.20 & 63.72 \\
|
|
|
|
32 & 2400.13 & 6.52 & 2187.44 & 5.94 & 28198.90 & 76.63 \\
|
|
|
|
96 & 1998.74 & 5.43 & 2325.39 & 6.32 & 32542.30 & 88.43 \\
|
|
|
|
97 & 1996.01 & 5.42 & 2322.81 & 6.31 & 29801.30 & 80.98 \\
|
|
|
|
127 & 1923.81 & 5.23 & 2330.30 & 6.33 & 28557.80 & 77.60 \\
|
|
|
|
128 & 1731.98 & 4.71 & 2282.93 & 6.20 & 32643.30 & 88.70 \\
|
|
|
|
129 & 1903.31 & 5.17 & 2334.25 & 6.34 & 31198.20 & 84.78 \\
|
|
|
|
191 & 1736.78 & 4.72 & 2345.91 & 6.37 & 32247.30 & 87.63 \\
|
|
|
|
192 & 1694.44 & 4.60 & 2345.38 & 6.37 & 32830.60 & 89.21 \\
|
|
|
|
229 & 1715.10 & 4.66 & 2351.01 & 6.39 & 34360.90 & 93.37 \\
|
|
|
|
255 & 1720.39 & 4.67 & 2335.21 & 6.35 & 33477.70 & 90.97 \\
|
|
|
|
256 & 777.65 & 2.11 & 2306.48 & 6.27 & 33473.90 & 90.96 \\
|
|
|
|
257 & 1729.27 & 4.70 & 2330.68 & 6.33 & 33686.50 & 91.54 \\
|
|
|
|
319 & 1704.80 & 4.63 & 2360.03 & 6.41 & 34335.20 & 93.30 \\
|
|
|
|
320 & 1414.84 & 3.84 & 2364.53 & 6.43 & 36438.10 & 99.02 \\
|
|
|
|
321 & 1741.30 & 4.73 & 2366.38 & 6.43 & 35433.70 & 96.29 \\
|
|
|
|
417 & 1733.00 & 4.71 & 2378.34 & 6.46 & 36133.70 & 98.19 \\
|
|
|
|
479 & 1731.17 & 4.70 & 2233.05 & 6.07 & 32951.40 & 89.54 \\
|
|
|
|
480 & 1678.77 & 4.56 & 2187.87 & 5.95 & 37260.00 & 101.25 \\
|
|
|
|
511 & 1733.60 & 4.71 & 2224.61 & 6.05 & 34128.00 & 92.74 \\
|
|
|
|
512 & 782.96 & 2.13 & 2284.85 & 6.21 & 36526.40 & 99.26 \\
|
|
|
|
639 & 1714.42 & 4.66 & 2292.78 & 6.23 & 35249.20 & 95.79 \\
|
|
|
|
640 & 663.42 & 1.80 & 2264.70 & 6.15 & 36538.70 & 99.29 \\
|
|
|
|
767 & 1690.82 & 4.59 & 2324.83 & 6.32 & 35718.50 & 97.06 \\
|
|
|
|
768 & 792.04 & 2.15 & 2363.92 & 6.42 & 32116.80 & 87.27 \\
|
|
|
|
769 & 1696.95 & 4.61 & 2321.31 & 6.31 & 33033.90 & 89.77 \\
|
|
|
|
\bottomrule
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
\caption{MFlop/s and CPU utlisation per matrix size of the matrix
|
|
|
|
multiplication benchmark for the naive, blocked, and BLAS implementations.}
|
|
|
|
\label{fig:benchtab}
|
|
|
|
\end{figure}
|
2022-09-26 17:35:06 +00:00
|
|
|
\end{document}
|