hw1: added figure for stride/csize graph

This commit is contained in:
Claudio Maggioni 2022-10-05 20:04:15 +02:00
parent bf57b5b6d6
commit 7e716e1db2
2 changed files with 135 additions and 13 deletions

View file

@ -6,6 +6,10 @@
\usepackage{graphicx}
\usepackage{tikz}
\usepackage{multirow}
\usepackage{makecell}
\usepackage{booktabs}
\usepackage[nomessages]{fp}
\usetikzlibrary{decorations.markings}
\begin{document}
@ -13,20 +17,22 @@
\setduedate{12.10.2022 (midnight)}
\serieheader{High-Performance Computing Lab}{2022}{Student: Claudio
Maggioni}{Discussed with: ---}{Solution for Project 1}{}
Maggioni}{Discussed with: --}{Solution for Project 1}{}
\newline
\assignmentpolicy
In this project you will practice memory access optimization,
performance-oriented programming, and OpenMP parallelizaton on the ICS Cluster.
%\assignmentpolicy
%In this project you will practice memory access optimization,
%performance-oriented programming, and OpenMP parallelizaton on the ICS Cluster.
\tableofcontents
\section{Explaining Memory Hierarchies \punkte{25}}
\subsection{Memory Hierarchy Parameters of the Cluster}
By identifying the memory hierarchy parameters through \texttt{likwid-topology}
for the cache topology and \texttt{free -g} for the amount of primary memory I
find the following values:
By invoking \texttt{likwid-topology} for the cache topology and \texttt{free -g}
for the amount of primary memory, the following memory hierarchy parameters are
found:
\begin{center}
\begin{tabular}{llll}
@ -41,10 +47,11 @@ All values are reported using base 2 IEC byte units. The cluster has 2 sockets
and a total of 20 cores (10 per socket). The cache topology diagram reported by
\texttt{likwid-topology -g} is shown in Figure \ref{fig:topo}.
\pagebreak[4]
\begin{figure}[t]
\begin{center}
Socket 0:\vspace{0.3cm}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\\hline
32 kB & 32 kB & 32 kB & 32 kB & 32 kB & 32 kB & 32 kB & 32 kB & 32
@ -70,6 +77,75 @@ and a total of 20 cores (10 per socket). The cache topology diagram reported by
\subsection{Memory Access Pattern of \texttt{membench.c}}
\begin{figure}[t]
\begin{center}
\begin{tikzpicture}
\tikzset{->-/.style={decoration={
markings,
mark=at position .75 with {\arrow{>}}},postaction={decorate}}};
\draw (0,0) grid (5,1);
\draw [dashed] (5,0) -- (5.5,0);
\draw [dashed] (5,1) -- (5.5,1);
\draw [dashed] (6.5,0) -- (7,0);
\draw [dashed] (6.5,1) -- (7,1);
\draw (7,0) grid (12,1);
\foreach \r in {0,1,...,4}{
\fill (\r + 0.5,0.5) circle [radius=2pt];
\draw[->-] (\r-0.5,0.5) to[bend left] (\r+0.5,0.5);
\draw (\r + 0.5, -0.5) node {$\r$};
}
\draw[->-] (4.5,0.5) to[bend left] (5.5,0.5);
\foreach \r in {7,8,...,11}{
\fill (\r + 0.5,0.5) circle [radius=2pt];
\FPeval{l}{round(\r + 128 - 12, 0)}
\draw[->-] (\r-0.5,0.5) to[bend left] (\r+0.5,0.5);
\draw (\r + 0.5, -0.5) node {$\l$};
}
\draw (0,-3) grid (3,-2);
\draw [dashed] (3,-2) -- (3.5,-2);
\draw [dashed] (3,-3) -- (3.5,-3);
\draw [dashed] (4,-2) -- (4.5,-2);
\draw [dashed] (4,-3) -- (4.5,-3);
\draw (4.5,-2) -- (7.5,-2);
\draw (4.5,-3) -- (7.5,-3);
\foreach \r in {4.5,5.5,...,7.5}{
\draw (\r,-3) -- (\r,-2);
}
\draw [dashed] (7.5,-2) -- (8,-2);
\draw [dashed] (7.5,-3) -- (8,-3);
\draw [dashed] (8.5,-2) -- (9,-2);
\draw [dashed] (8.5,-3) -- (9,-3);
\draw (9,-3) grid (12,-2);
\fill (0.5,-2.5) circle [radius=2pt];
\fill (6,-2.5) circle [radius=2pt];
\fill (11.5,-2.5) circle [radius=2pt];
\foreach \r in {0,1,2}{
\draw (\r + 0.5, -3.5) node {$\r$};
}
\foreach \r in {9,10,11}{
\FPeval{l}{round(\r - 12, 0)}
\draw (\r + 0.5, -3.5) node {\tiny $2^{20} \l$};
}
\foreach \r in {4.5,5.5}{
\FPeval{l}{round(\r - 6.5, 0)}
\draw (\r + 0.5, -3.5) node {\tiny $2^{10} \l$};
}
\draw (7,-3.5) node {\tiny $2^{10}$};
\draw[->-] (-0.5,-2.5) to[bend left] (0.5,-2.5);
\draw[->-] (0.5,-2.5) to[bend left] (6,-2.5);
\draw[->-] (6,-2.5) to[bend left] (11.5,-2.5);
\end{tikzpicture}
\end{center}
\caption{Memory access patterns of \texttt{membench.c} for \texttt{csize =
128} and \texttt{stride = 1} (above) and for \texttt{csize = $2^{20}$} and
\texttt{stride = $2^{10}$} (below)}
\label{fig:access}
\end{figure}
The benchmark \texttt{membench.c} measures the average time of repeated read and
write overations across a set of indices of a stack-allocated array of 32-bit
signed integers. The indices vary according to the access pattern used, which in
@ -84,7 +160,8 @@ and so on and so forth.
Therefore, for \texttt{csize = 128} and \texttt{stride = 1} the array will
access all indexes between 0 and 127 sequentially, and for \texttt{csize =
$2^{20}$} and \texttt{stride = $2^{10}$} the benchmark will access index 0, then
index $2^{10}-1$, and finally index $2^{20}-1$.
index $2^{10}-1$, and finally index $2^{20}-1$. The access patterns for these
two configurations are shown visually in Figure \ref{fig:access}.
\subsection{Analyzing Benchmark Results}
@ -212,8 +289,9 @@ implementing the pseudocode, my implementation:
\end{figure}
The results of the matrix multiplication benchmark for the naive, blocked, and
BLAS implementations are shown in Figure \ref{fig:bench}. The blocked
implementation achieves approximately 50\% more FLOPS than the naive
BLAS implementations are shown in Figure \ref{fig:bench} as a graph of GFlop/s
over matrix size or in Figure \ref{fig:benchtab} as a table. The blocked
implementation achieves on average 50\% more FLOPS than the naive
implementation thanks to the optimisations in space and temporal cache locality
described. However, the blocked implementation achives less than a tenth of
FLOPS compared to Intel MKL BLAS based one due to the microarchitecture
@ -221,9 +299,53 @@ optimization the latter one is able to exploit.
\begin{figure}[t]
\includegraphics[width=\textwidth]{timing.pdf}
\caption{Results of the matrix multiplication benchmark for the naive,
blocked, and BLAS implementations}
\caption{GFlop/s per matrix size of the matrix multiplication benchmark for the naive,
blocked, and BLAS implementations. The Y-axis is log-scaled.}
\label{fig:bench}
\end{figure}
\begin{figure}[t]
\begin{center}
\begin{tabular}{c|cc|cc|cc}
\toprule
& \multicolumn{2}{c|}{Naive} & \multicolumn{2}{c|}{Blocked} &
\multicolumn{2}{c}{BLAS} \\
\makecell{Size} & \makecell{MFLOPS} &
\makecell{\% CPU} & \makecell{MFLOPS} &
\makecell{\% CPU} & \makecell{MFLOPS} &
\makecell{\% CPU} \\
\midrule
31 & 2393.33 & 6.50 & 2112.63 & 5.74 & 23449.20 & 63.72 \\
32 & 2400.13 & 6.52 & 2187.44 & 5.94 & 28198.90 & 76.63 \\
96 & 1998.74 & 5.43 & 2325.39 & 6.32 & 32542.30 & 88.43 \\
97 & 1996.01 & 5.42 & 2322.81 & 6.31 & 29801.30 & 80.98 \\
127 & 1923.81 & 5.23 & 2330.30 & 6.33 & 28557.80 & 77.60 \\
128 & 1731.98 & 4.71 & 2282.93 & 6.20 & 32643.30 & 88.70 \\
129 & 1903.31 & 5.17 & 2334.25 & 6.34 & 31198.20 & 84.78 \\
191 & 1736.78 & 4.72 & 2345.91 & 6.37 & 32247.30 & 87.63 \\
192 & 1694.44 & 4.60 & 2345.38 & 6.37 & 32830.60 & 89.21 \\
229 & 1715.10 & 4.66 & 2351.01 & 6.39 & 34360.90 & 93.37 \\
255 & 1720.39 & 4.67 & 2335.21 & 6.35 & 33477.70 & 90.97 \\
256 & 777.65 & 2.11 & 2306.48 & 6.27 & 33473.90 & 90.96 \\
257 & 1729.27 & 4.70 & 2330.68 & 6.33 & 33686.50 & 91.54 \\
319 & 1704.80 & 4.63 & 2360.03 & 6.41 & 34335.20 & 93.30 \\
320 & 1414.84 & 3.84 & 2364.53 & 6.43 & 36438.10 & 99.02 \\
321 & 1741.30 & 4.73 & 2366.38 & 6.43 & 35433.70 & 96.29 \\
417 & 1733.00 & 4.71 & 2378.34 & 6.46 & 36133.70 & 98.19 \\
479 & 1731.17 & 4.70 & 2233.05 & 6.07 & 32951.40 & 89.54 \\
480 & 1678.77 & 4.56 & 2187.87 & 5.95 & 37260.00 & 101.25 \\
511 & 1733.60 & 4.71 & 2224.61 & 6.05 & 34128.00 & 92.74 \\
512 & 782.96 & 2.13 & 2284.85 & 6.21 & 36526.40 & 99.26 \\
639 & 1714.42 & 4.66 & 2292.78 & 6.23 & 35249.20 & 95.79 \\
640 & 663.42 & 1.80 & 2264.70 & 6.15 & 36538.70 & 99.29 \\
767 & 1690.82 & 4.59 & 2324.83 & 6.32 & 35718.50 & 97.06 \\
768 & 792.04 & 2.15 & 2363.92 & 6.42 & 32116.80 & 87.27 \\
769 & 1696.95 & 4.61 & 2321.31 & 6.31 & 33033.90 & 89.77 \\
\bottomrule
\end{tabular}
\end{center}
\caption{MFlop/s and CPU utlisation per matrix size of the matrix
multiplication benchmark for the naive, blocked, and BLAS implementations.}
\label{fig:benchtab}
\end{figure}
\end{document}