
HPC Software Atelier, Fall Semester 2022
Team: Prof. O. Schenk, Dr. J. Kardoš,
T. Holt, M. Lechekhab, Z. Panthakkalakath

Project 0
HPC Primer in C++

Due date: Wednesday 5 October 2022 at 23:59
This project will introduce you to basic programming concepts for HPC. This is meant to be a short project to harmo-
nize the basic programming skills of incoming students. For this reason this is the only project which does not require
a project report.
NB: This project must be completed individually by each student. All student submissions will be run through a
plagiarism checker to ensure that students have done the assignment independently.
Please carefully read the “Additional notes and submission details” at the end of this document for instructions on
how to submit your work.

1. Compiling and running a program on the ICS cluster [20 points]

The file read environment.cpp is a simple C++ program that reads some environment variables and prints it to
the console.
Your first task is to log onto the ICS cluster , compile, and then run this program. Please submit a screenshot of your
terminal after the program has finished execution.
To log onto the ICS cluster you will need to use the Secure Shell (SSH) cryptographic network protocol. This allows
you to open up a terminal on a remote machine. You may need to be logged into the VPN if you are not connected to
the USI network.

[user@localhost]$ ssh userid@hpc.ics.usi.ch
[user@icslogin01]$

Once you successfully log into the cluster you will be connected to the login node. The login node manages basic
administration of the cluster and is the common interface for all users. Running programs on the login node may
cause it to bog down and crash, which could bring down the entire cluster. Thus, you should never run programs
on the login node. You will know that you are connected to the login node if the hostname in your cursor contains
the word “login”; for example, in the code snippet shown above the hostname is icslogin01.
To connect to a compute node you may use:

[user@icslogin01]$ salloc
[user@icsnodeXX]$

Now that you are connected to a compute node, you must load the GNU compiler to compile your program. To do
this please use:

[user@icsnodeXX]$ module load gcc

NB: You will need to re-load your required modules each time you connect to a node.
You can see the modules that are currently loaded using the command:

[user@icsnodeXX]$ module list

Next you need to compile the program. To do this you will use the GNU C++ compiler g++ (if we were compiling C
code we would use gcc).

[user@icsnodeXX]$ g++ -o ciao read_environment.cpp

1

https://en.wikipedia.org/wiki/Secure_Shell
https://content.usi.ch/sites/default/files/storage/attachments/serv-inf/serv-inf-servizio-informatico-vpnlinux-eng-2.pdf

HPC Software Atelier, Fall Semester 2022
Team: Prof. O. Schenk, Dr. J. Kardoš,
T. Holt, M. Lechekhab, Z. Panthakkalakath

What we have done with this command is to run the program “g++” and we have passed it three arguments separated
by space:

1. The option flag -o which notifies the program that the next argument will contain the desired name of the
compiled output file.

2. The output filename that we wish to specify.

3. The name of the file that we wish to compile.

You should now have a binary file named ciao in your directory. Execute this binary, passing it your first and last
name in camelCase as a command line argument.

[user@icsnodeXX]$./ciao firstnameLastname

Take a screenshot of your terminal showing the results and save it as the deliverable for this first problem.

2. Implementing a basic fraction toolbox in C++ [50 points]

In the fraction summing directory you will find the skeleton of a program to do some basic operations with
fractions. Header files help you organize your codebase more effectively by moving function and variable declarations
to a file seperate from the main program. In the header file fraction toolbox.hpp you will find a number of
function declarations. In the C/C++ programming language function declarations are generally of the form:

functionReturnDataType functionName(inputDataType inputName);

In the directory you will also find the source file fraction toolbox.cppwhere the functions are actually defined.
Please complete the following tasks in the fraction toolbox files in order to implement a basic fraction toolbox (each
item will have a TODO comment in the source code) [5 points each]:

1. In the header file define a C datatype struct fraction to store a rational number (i.e., a fraction of inte-
gers). The numerator and the denominator of the fraction should be named num and denom respectively.

2. Write a function square fraction() that takes a fraction structure as input and returns its square as a
fraction while leaving the original input unchanged.

3. Write a function, square fraction inplace(), that takes a fraction structure as input and squares
that fraction without returning any data. Add the function declaration to fraction toolbox.hpp.

4. Write a function, fraction2double(), that takes a fraction as input and returns its value as a double
precision floating point number.

5. Write a function, gcd(), that uses the recursive Euclid’s algorithm (see Algorithm ?? below) to return the
greatest common divisor of two integers.

6. Write a function, gcd() (overloading the gcd() function call), that takes a fraction as input and returns
the greatest common divisor (integer) of the numerator and denominator using the iterative Euclid’s algorithm
(see Algorithm ?? below).

7. Write a function, reduce fraction inplace(), to reduce a fraction in place using either of the gcd()
functions. Add a short comment to your source code that states which of the two gcd() functions your code
is using (state the line numbers), and how you know it is using that one. Add the function declaration to
fraction toolbox.hpp.

2

https://en.wikipedia.org/wiki/Function_overloading

HPC Software Atelier, Fall Semester 2022
Team: Prof. O. Schenk, Dr. J. Kardoš,
T. Holt, M. Lechekhab, Z. Panthakkalakath

8. Write a function, add fractions(), that takes two fraction structures as input, and returns their sum as
a new fraction in it’s most reduced form.

9. Write a function, sum fraction array approx(), that takes a pointer to an array of fractions and n (the
length of the array) as input, and returns a double precision floating point number approximately equal to the
sum of the array. Please write a brief comment in the code that explains why this is an approximate function.

10. Write a function, sum fraction array(), that takes a pointer to an array of fractions and n (the length of
the array) as input, and returns a fraction equal to the sum of the array, by summing the fraction objects.

Euclid’s Algorithm

Euclid’s Algorithm, discovered by the Greek mathemetician Euclid in 300BC, is a method for finding the greatest
common divisor of two integers. The algorithm can be implemented either recursively or iteratively, below we provide
the pseudocode for both versions. NB: The ← symbol represents the assignment operator. In most programming
languages this operator is represented by the = symbol, although mathematically speaking this choice of symbols is
questionable.

Algorithm 1: Euclidean Algorithm - Recursive
Data: Two integers a and b
Result: Integer greatest common divisor of a and b

1 Function gcd(a, b):
2 if b = 0 then
3 return a
4 else
5 return gcd(b, a mod b)
6 end

Algorithm 2: Euclidean Algorithm - Iterative
Data: Two integers a and b
Result: Integer greatest common divisor of a and b

1 Function gcd(a, b):
2 while b 6= 0 do
3 t← b
4 b← a mod b
5 a← t

6 end
7 return a

3. Testing the Function Toolbox [30 points]

The main.cpp file is where you will find the skeleton of the testing program for your fraction toolbox. All of the
functions that you declared in the header file will be available in your main program due to the include statement:

#include "fraction toolbox.hpp"

3

https://en.wikipedia.org/wiki/Euclidean_algorithm
https://en.wikipedia.org/wiki/Recursion_(computer_science)

HPC Software Atelier, Fall Semester 2022
Team: Prof. O. Schenk, Dr. J. Kardoš,
T. Holt, M. Lechekhab, Z. Panthakkalakath

Since compiling this program requires managing dependencies across different files that must be compiled, we use a
makefile to automate compiling. To compile code using a makefile simply use:
[user@icsnodeXX]$ make

You may also clean out all compiled binaries by using:
[user@icsnodeXX]$ make clean

The main.cpp file also contains the main() function. In C code, this is the only function that will be executed
when the code is run, thus if you want other functions to be executed when you run the code, you must call them in
the main() function. Keep this in mind as you are building and testing the various other parts of this assignment.
Please implement the following functions in the main.cpp file to test your toolbox:

1. Write a function, test23467(), that reads command line arguments (you may use the pre-implemented
readcmdline() function) to create a fraction, then tests functions 2, 3, 4, 6, and 7 by calling the functions
and printing the results. Please also print descriptions of all of the results so that it is obvious which results
represent which function. There is a pre-implemented print function for fractions, you can write your own print
statements for testing functions 4 and 6 [5 points].

2. Write a function, test5(), that prompts the user for two integers and then prints the greatest common divisor
of those two integers. Hint: check out the cin object [5 points].

3. Write a function, test array functions(), that:

a) takes integer n as an input;

b) dynamically allocates a memory buffer for an array of fractions of length n using the malloc function;

c) passes a pointer to that memory buffer to the pre-implemented function fill fraction array().
The buffer will then be filled with an array of fractions of the form

[
1

1(1+1) ,
1

2(1+2) , ... ,
1

n(1+n)

]
.

Hint: see pre-implemented print fraction array() function to verify results;

d) passes a pointer to the (now filled) memory buffer to your sum fraction array() function;

e) prints resultant sum;

f) passes a pointer to the memory buffer to your sum fraction array approx() function;

g) prints the resultant sum.

Test this function in the main() function and ensure that it is giving you the results you would expect for small
n. At some large n the sum fraction array() function will start giving funny results. Find that n, and
then write a brief explaination of what is happening as a comment in the source code. Why is this not happening
to the approximate function? Hint: the values of 32-bit integers are between −231 and +231. [20 points].

4. Once you have finished implementing the testing statements please call the test toolbox() function from
the main() function to prepare the code for submission.

Additional notes and submission details

Submit the source code files (together with your used Makefile) in an archive file (tar, zip, etc.) to iCorsi .

• Your submission should be a gzipped tar archive, formatted like project number lastname firstname.zip or
project number lastname firstname.tgz. It should contain:

– the screenshot of your terminal for excercise 1.

– all the source codes of your solutions.

• Submit your .zip or .tgz through iCorsi .

4

https://en.cppreference.com/w/cpp/io/cin
https://www.cplusplus.com/reference/cstdlib/malloc/
https://www.icorsi.ch/course/view.php?id=12615

	Compiling and running a program on the ICS cluster [20 points]
	Implementing a basic fraction toolbox in C++ [50 points]
	Testing the Function Toolbox [30 points]

