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HPC 2022 — Submission Instructions
(Please, notice that following instructions are mandatory:
submissions that don’t comply with, won’t be considered)

• Assignments must be submitted to iCorsi (i.e. in electronic format).
• Provide both executable package and sources (e.g. C/C++ files, Matlab). If you are using

libraries, please add them in the file. Sources must be organized in directories called:
Project number lastname firstname

and the file must be called:
project number lastname firstname.zip
project number lastname firstname.pdf

• The TAs will grade your project by reviewing your project write-up, and looking at the imple-
mentation you attempted, and benchmarking your code’s performance.

• You are allowed to discuss all questions with anyone you like; however: (i) your submission
must list anyone you discussed problems with and (ii) you must write up your submission
independently.

In this project you will practice memory access optimization, performance-oriented programming,
and OpenMP parallelizaton on the ICS Cluster.

1. Explaining Memory Hierarchies (25 Points)

1.1. Memory Hierarchy Parameters of the Cluster

By identifying the memory hierarchy parameters through likwid-topology for the cache topology
and free -g for the amount of primary memory I find the following values:

Main memory 62 GB
L3 cache 25 MB per socket
L2 cache 256 kB per core
L1 cache 32 kB per core

All values are reported using base 2 IEC byte units. The cluster has 2 sockets and a total of 20
cores (10 per socket). The cache topology diagram reported by likwid-topology -g is shown in
Figure 1.

https://www.icorsi.ch/course/view.php?id=14652


Socket 0:

0 1 2 3 4 5 6 7 8 9

32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB

256 kB 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB

25 MB

Socket 1:

10 11 12 13 14 15 16 17 18 19

32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB

256 kB 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB

25 MB

Figure 1: Cache topology diagram as outputted by likwid-topology -g. Byte sizes all in IEC
units.
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(a) Personal laptop
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Figure 2: Results of the membench.c benchmark for both my personal laptop (in Figure 2a) and
the cluster (in Figure 2b).

1.2. Memory Access Pattern of membench.c

The benchmark membench.cmeasures the average time of repeated read and write overations across
a set of indices of a stack-allocated array of 32-bit signed integers. The indices vary according to
the access pattern used, which in turn is defined by two variables, csize and stride. csize is an
upper bound on the index value, i.e. (one more of) the highest index used to access the array in
the pattern. stride determines the difference between array indexes over access iterations, i.e. a
stride of 1 will access every array index, a stride of 2 will skip every other index, a stride of 4
will access one index then skip 3 and so on and so forth.
Therefore, for csize = 128 and stride = 1 the array will access all indexes between 0 and 127

sequentially, and for csize = 220 and stride = 210 the benchmark will access index 0, then index
210 − 1, and finally index 220 − 1.

1.3. Analyzing Benchmark Results

The membench.c benchmark results for my personal laptop (Macbook Pro 2018 with a Core i7-
8750H CPU) and the cluster are shown in figure 2.
The memory access graph for the cluster’s benchmark results shows that temporal locality is best
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Figure 3: Result of the block division process of a square matrix of size 5 using a block size of 2.
The 2-by-1 and 1-by-2 rectangular remainders are shown in blue and the square matrix
of remainder size (i.e. 1) is shown in green.

for small array sizes and for small stride values. In particular, for array memory sizes of 16MB
or lower (csize of 4 · 220 or lower) and stride values of 2048 or lower the mean read+write time
is less than 10 nanoseconds. Temporal locality is worst for large sizes and strides, although the
largest values of stride for each size (like csize / 2 and csize / 4) achieve better mean times
due to the few elements accessed in the pattern (this observation is also valid for the largest strides
of each size series shown in the graph).

2. Optimize Square Matrix-Matrix Multiplication (60 Points)

The file matmult/dgemm-blocked.c contains a C implementation of the blocked matrix multipli-
cation algorithm presented in the project. Other than implementing the pseudocode, my imple-
mentation:

• Handles the edge cases related to the “remainders” in the matrix block division, i.e. when
the division between the size of the matrix and the block size yields a remainder. Assuming
only squared matrices are multiplied through the algorithm (as in the test suite provided) the
block division could yield rectangular matrix blocks located in the last rows and columns of
each matrix, and the bottom-right corner of the matrix will be contained in a square matrix
block of the size of the remainder. The result of this process is shown in Figure 3;

• Converts matrix A into row major format. As shown in Figure 4, by having A in row major
format and B in column major format, iterations across matrix block in the inner most loop of
the algorithm (the one calling naivemm) cache hits are maximised by achieving space locality
between the blocks used;

• Caches the result of each innermost iteration into a temporary matrix of block size before
storing it into matrix C. This achieves better space locality when naivemm needs to store
values in matrix C. The block size temporary matrix has virtually no stride and thus cache
hits are maximised. The copy operation is implemented with bulk copy memcpy calls.

The results of the matrix multiplication benchmark for the naive, blocked, and BLAS imple-
mentations are shown in Figure 5. The blocked implementation achieves approximately 50% more
FLOPS than the naive implementation thanks to the optimisations in space and temporal cache
locality described. However, the blocked implementation achives less than a tenth of FLOPS com-
pared to Intel MKL BLAS based one due to the microarchitecture optimization the latter one is
able to exploit.
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Matrix A Matrix B

Figure 4: Inner most loop iteration of the blocked GEMM algorithm across matrices A and B. The
red lines represent the “majorness” of each matrix (A is converted by the algorithm in
row-major form, while B is given and used in column-major form). The shades of orange
represent the blocks used in each iteration.
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Figure 5: Results of the matrix multiplication benchmark for the naive, blocked, and BLAS imple-
mentations
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