
High-Performance Computing Lab 2022

Student: Claudio Maggioni Discussed with: Gianmarco De Vita

Solution for Project 1 Due date: 12.10.2022 (midnight)

Contents

1. Explaining Memory Hierarchies (25 Points) 1
1.1. Memory Hierarchy Parameters of the Cluster . 1
1.2. Memory Access Pattern of membench.c . 2
1.3. Analyzing Benchmark Results . 3

2. Optimize Square Matrix-Matrix Multiplication (60 Points) 3

1. Explaining Memory Hierarchies (25 Points)

1.1. Memory Hierarchy Parameters of the Cluster

By invoking likwid-topology for the cache topology and free -g for the amount of primary
memory, the following memory hierarchy parameters are found:

Main memory 62 GB
L3 cache 25 MB per socket
L2 cache 256 kB per core
L1 cache 32 kB per core

All values are reported using base 2 IEC byte units. The cluster has 2 sockets and a total of 20
cores (10 per socket). The cache topology diagram reported by likwid-topology -g is shown in
Figure 1.

Socket 0:

0 1 2 3 4 5 6 7 8 9

32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB

256 kB 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB

25 MB

Socket 1:

10 11 12 13 14 15 16 17 18 19

32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB

256 kB 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB

25 MB

Figure 1: Cache topology diagram as outputted by likwid-topology -g. Byte sizes all in IEC
units.

0 1 2 3 4 123 124 125 126 127

0 1 2 220 − 3 220 − 2 220 − 1219 − 1 219 219 + 1

Figure 2: Memory access patterns of membench.c for csize = 128 and stride = 1 (above) and
for csize = 220 and stride = 219 (below)

1.2. Memory Access Pattern of membench.c

The benchmark membench.cmeasures the average time of repeated read and write overations across
a set of indices of a stack-allocated array of 32-bit signed integers. The indices vary according to
the access pattern used, which in turn is defined by two variables, csize and stride. csize is an
upper bound on the index value, i.e. (one more of) the highest index used to access the array in
the pattern. stride determines the difference between array indexes over access iterations, i.e. a
stride of 1 will access every array index, a stride of 2 will skip every other index, a stride of 4
will access one index then skip 3 and so on and so forth. The benchmark stops when the index to
access is strictly greater than csize - stride.

Therefore, for csize = 128 and stride = 1 the array will access all indexes between 0 and 127
sequentially, and for csize = 220 and stride = 219 the benchmark will access index 0, then index
219 − 1. The access patterns for these two configurations are shown visually in Figure 2.
By running the membench.c both on my personal laptop and on the cluster, the results shown

in Figure 3 are obtained. csize values are shown as different data series and labeled by byte
size and stride values are mapped on the x axis by the byte-equivalent value as well1. For
csize = 128 = 512 bytes and stride = 1 = 4 bytes the mean access time is 0.124 nanosec-
onds, while for csize = 220 = 4MB and for stride = 219 = 2MB the mean access time is 1.156
nanoseconds. The first set of parameters performs well thanks to the low stride value, thus achiev-

1Byte values are a factor of 4 greater than the values used in the code and in Figure 3. This is due to the fact that
the array elements used in the benchmark are 32-bit signed integers, which take up 4 bytes each.

2

 0

 5

 10

 15

 20

 25

 4 16 64 256 1K 4K 16K 64K 256K 1M

T
im

e
R

ea
d+

W
rit

e
(n

an
os

ec
on

ds
)

Stride (bytes)

0.5 KB
1 KB
2 KB
4 KB
8 KB

16 KB
32 KB
64 KB

128 KB
256 KB
512 KB

1 MB
2 MB
4 MB
8 MB

16 MB
32 MB
64 MB

6-Core Intel(R) Core(R) CPU i7-8750H 4.10GHz Read+Write (ns) Versus Stride

(a) Personal laptop

 0

 5

 10

 15

 20

 25

 30

 4 16 64 256 1K 4K 16K 64K 256K 1M

T
im

e
R

ea
d+

W
rit

e
(n

an
os

ec
on

ds
)

Stride (bytes)

10-Core Intel(R) Xeon(R) CPU E3-1585L v5 3.00GHz Read+Write (ns) Versus Stride

0.5 KB
1 KB
2 KB
4 KB
8 KB

16 KB
32 KB
64 KB

128 KB
256 KB
512 KB

1 MB
2 MB
4 MB
8 MB

16 MB
32 MB
64 MB

(b) Cluster

Figure 3: Results of the membench.c benchmark for both my personal laptop (in Figure 3a) and
the cluster (in Figure 3b).

ing very good space locality and maximizing cache hits. However, the second set of parameters
achieves good performance as well thanks to the few values accessed with each pass, thus improving
the temporal locality of each address accessed. This observation applies for the few last data points
in each data series of Figure 3, i.e. for stride values close to csize.

1.3. Analyzing Benchmark Results

The membench.c benchmark results for my personal laptop (Macbook Pro 2018 with a Core i7-
8750H CPU) and the cluster are shown in figure 3.
The memory access graph for the cluster’s benchmark results shows that temporal locality is best

for small array sizes and for small stride values. In particular, for array memory sizes of 16MB
or lower (csize of 4 · 220 or lower) and stride values of 2048 or lower the mean read+write time
is less than 10 nanoseconds. Temporal locality is worst for large sizes and strides, although the
largest values of stride for each size (like csize / 2 and csize / 4) achieve better mean times
for the aformentioned effect of having stride values close to csize.
The pattern that can be read from the graphs, especially the one for the cluster, shows that the

stride axis is divided in regions showing memory access time of similar magnitude. The boundary
between the first and the second region is a stride value of rougly 2KB, while a stride of 512KB
roughly separates the second and the third region. The difference in performance between regions
and the similarity of performance within regions suggest the threshold stride values are related to
changes in the use of the cache hierarchy. In particular, the first region may characterize regions
where the L1 cache, the fastest non-register memory available, is predominantly used. Then the
second region might overlap with a more intense use of the L2 cache and likewise between the third
region and the L3 cache.

https://

youtu.be/

JzJlzGaQFoc2. Optimize Square Matrix-Matrix Multiplication (60 Points)

The file matmult/dgemm-blocked.c contains a C implementation of the blocked matrix multipli-
cation algorithm presented in the project. A pseudocode listing of the implementation is provided
in Figure 4.
In order to achieve a correct and fast execution, my implementation:

• Handles the edge cases related to the “remainders” in the matrix block division, i.e. when
the division between the size of the matrix and the block size yields a remainder. Assuming
only squared matrices are multiplied through the algorithm (as in the test suite provided) the

3

https://youtu.be/JzJlzGaQFoc
https://youtu.be/JzJlzGaQFoc
https://youtu.be/JzJlzGaQFoc

INPUT: A (n by n), B (n by n), n

OUTPUT: C (n by n)

s := 26 # block dimension

A_row := <matrix A converted in row major form>

C_temp := <empty s by s matrix>

for i := 0 to n by s:

i_next := min(i + s, n)

for j := 0 to n by s:

j_next := min(j + s, n)

<set all cells in C_temp to 0>

for k := 0 to n by s:

k_next := min(k + s, n)

Perform naive matrix multiplication, incrementing cells of C_temp

with each multiplication result

naivemm(A_row[i, k][i_next, k_next], B[k, j][k_next, j_next],

C_temp[0, 0][i_next - i, j_next - j])

end for

C[i, j][i_next, j_next] = C_temp[0, 0][i_next - i, j_next - j]

end for

end for

Figure 4: Pseudocode listing of my blocked matrix multiplication implementation. Matrix indices
start from 0 (i.e. row 0 and column 0 denotes the top-left-most cell in a matrix).
M[a, b][c, d] denotes a rectangular region of the matrix M whose top-left-most cell is
the cell in M at row a and column b and whose bottom-right-most cell is the cell in M
at row c− 1 and column d− 1.

block division could yield rectangular matrix blocks located in the last rows and columns of
each matrix, and the bottom-right corner of the matrix will be contained in a square matrix
block of the size of the remainder. The result of this process is shown in Figure 5;

• Converts matrix A into row major format. As shown in Figure 6, by having A in row major
format and B in column major format, iterations across matrix block in the inner most loop of
the algorithm (the one calling naivemm) cache hits are maximised by achieving space locality
between the blocks used. This achieved approximately an increase of performance of two
percentage points in terms of CPU utilization (i.e. from a baseline of 4% to 6%),

• Caches the result of each innermost iteration into a temporary matrix of block size before
storing it into matrix C. This achieves better space locality when naivemm needs to store
values in matrix C. The block size temporary matrix has virtually no stride and thus cache
hits are maximised. The copy operation is implemented with bulk copy memcpy calls. This
optimization achieves an extra half of a percentage point in terms of CPU utilization (i.e.
from the 6% discussed above to a final 6.5%).

The chosen matrix block size for running the benchmark on the cluster is:

4

Figure 5: Result of the block division process of a square matrix of size 5 using a block size of 2.
The 2-by-1 and 1-by-2 rectangular remainders are shown in blue and the square matrix
of remainder size (i.e. 1) is shown in green.

Matrix A Matrix B

Figure 6: Inner most loop iteration of the blocked GEMM algorithm across matrices A and B. The
red lines represent the “majorness” of each matrix (A is converted by the algorithm in
row-major form, while B is given and used in column-major form). The shades of orange
represent the blocks used in each iteration.

s = 26

as shown in the pseudocode. This value has been obtained by running an empirical binary search
on the value using the benchmark as a metric, i.e. by running ./run matrixmult.sh several times
with different values. For square blocks (i.e. the worst case) the total size for the matrix A and B
sub-block and the C temp temporary matrix block for C is:

Bytes = cellSize ∗ s2 ∗ 3 = 8 ∗ 262 ∗ 3 = 16224

given that a double-precision floating point number, the data type used for matrix cells in the
scope of this project, is 8 bytes long. The obtained total bytes size is fairly close to the L1 cache
size of the processor used in the cluster (32Kb = 32768 bytes), which is expected given that the
algorithm needs to exploit fast memory as much as possible. The reason the empirically best value
results in a theoretical cache allocation that is only half of the complete L1 cache size is due to
some real-life factors. For example, cache misses tipically result in aligned page loads which may
load unnecessary data.
A potential way to exploit the different cache levels is to apply the blocked matrix algorithm

iteratively multiple times. For example, OpenBLAS implements DGEMM by having two levels of
matrix blocks to better exploit the L2 and L3 caches found on most processors.

5

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800

P
er

fo
rm

an
ce

 (
G

F
lo

p/
s)

Matrix size (N)

NxN matrix-matrix-multiplication on 4-Core Intel(R) Xeon(R) CPU E3-1585L v5 3.00GHz

Naive dgemm
Blocked dgemm

MKL blas dgemm

Figure 7: GFlop/s per matrix size of the matrix multiplication benchmark for the naive, blocked,
and BLAS implementations. The Y-axis is log-scaled.

The results of the matrix multiplication benchmark for the naive, blocked, and BLAS implemen-
tations are shown in Figure 7 as a graph of GFlop/s over matrix size or in Figure 8 as a table.
The blocked implementation achieves on average 50% more FLOPS than the naive implementation
thanks to the optimisations in space and temporal cache locality described. However, the blocked
implementation achives less than a tenth of FLOPS compared to Intel MKL BLAS based one due
to the microarchitecture optimization the latter one is able to exploit.
I was unable to run this benchmark suite on my personal machine due to Intel MKL installation

issues that prevented the code to compile.

6

Naive Blocked BLAS
Size MFLOPS % CPU MFLOPS % CPU MFLOPS % CPU

31 2393.33 6.50 2112.63 5.74 23449.20 63.72
32 2400.13 6.52 2187.44 5.94 28198.90 76.63
96 1998.74 5.43 2325.39 6.32 32542.30 88.43
97 1996.01 5.42 2322.81 6.31 29801.30 80.98
127 1923.81 5.23 2330.30 6.33 28557.80 77.60
128 1731.98 4.71 2282.93 6.20 32643.30 88.70
129 1903.31 5.17 2334.25 6.34 31198.20 84.78
191 1736.78 4.72 2345.91 6.37 32247.30 87.63
192 1694.44 4.60 2345.38 6.37 32830.60 89.21
229 1715.10 4.66 2351.01 6.39 34360.90 93.37
255 1720.39 4.67 2335.21 6.35 33477.70 90.97
256 777.65 2.11 2306.48 6.27 33473.90 90.96
257 1729.27 4.70 2330.68 6.33 33686.50 91.54
319 1704.80 4.63 2360.03 6.41 34335.20 93.30
320 1414.84 3.84 2364.53 6.43 36438.10 99.02
321 1741.30 4.73 2366.38 6.43 35433.70 96.29
417 1733.00 4.71 2378.34 6.46 36133.70 98.19
479 1731.17 4.70 2233.05 6.07 32951.40 89.54
480 1678.77 4.56 2187.87 5.95 37260.00 101.25
511 1733.60 4.71 2224.61 6.05 34128.00 92.74
512 782.96 2.13 2284.85 6.21 36526.40 99.26
639 1714.42 4.66 2292.78 6.23 35249.20 95.79
640 663.42 1.80 2264.70 6.15 36538.70 99.29
767 1690.82 4.59 2324.83 6.32 35718.50 97.06
768 792.04 2.15 2363.92 6.42 32116.80 87.27
769 1696.95 4.61 2321.31 6.31 33033.90 89.77

Figure 8: MFlop/s and CPU utlisation per matrix size of the matrix multiplication benchmark for
the naive, blocked, and BLAS implementations.

7

	Explaining Memory Hierarchies (25 Points)
	Memory Hierarchy Parameters of the Cluster
	Memory Access Pattern of membench.c
	Analyzing Benchmark Results

	Optimize Square Matrix-Matrix Multiplication (60 Points)

