2020-05-14 13:52:49 +00:00
|
|
|
% vim: set ts=2 sw=2 et tw=80:
|
|
|
|
|
|
|
|
\documentclass[12pt,a4paper]{article}
|
|
|
|
|
|
|
|
\usepackage[utf8]{inputenc} \usepackage[margin=2cm]{geometry}
|
|
|
|
\usepackage{amstext} \usepackage{amsmath} \usepackage{array}
|
|
|
|
\newcommand{\lra}{\Leftrightarrow}
|
|
|
|
|
|
|
|
\title{Howework 4 -- Introduction to Computational Science}
|
|
|
|
|
|
|
|
\author{Claudio Maggioni}
|
|
|
|
|
|
|
|
\begin{document} \maketitle
|
|
|
|
\section*{Question 1}
|
|
|
|
$$L_0(x) = \prod_{j = 0, j \neq 0}^n \frac{x - x_j}{x_i - x_j} =
|
|
|
|
\frac{x - (-0.5)}{(-1) - (-0.5)} \cdot \frac{x - 0.5}{(-1) - 0.5} \cdot
|
|
|
|
\frac{x - 1}{(-1) - 1} = -\frac{2}{3}x^3 + \frac{2}{3}x^2
|
|
|
|
+\frac{1}{6} x - \frac{1}{6}$$
|
|
|
|
|
|
|
|
$$L_1(x) = \prod_{j = 0, j \neq 1}^n \frac{x - x_j}{x_i - x_j} =
|
|
|
|
\frac{x - (-1)}{(-0.5) - (-1)} \cdot \frac{x - 0.5}{(-0.5) - 0.5} \cdot
|
|
|
|
\frac{x - 1}{(-0.5) - 1} = \frac{4}{3}x^3 - \frac{2}{3}x^2 - \frac{4}{3}x + \frac{2}{3}$$
|
|
|
|
|
|
|
|
$$L_2(x) = \prod_{j = 0, j \neq 2}^n \frac{x - x_j}{x_i - x_j} =
|
|
|
|
\frac{x - (-1)}{0.5 - (-1)} \cdot \frac{x - (-0.5)}{0.5 - (-0.5)} \cdot
|
|
|
|
\frac{x - 1}{0.5 - 1} = -\frac{4}{3}x^3 - \frac{2}{3}x^2 + \frac{4}{3}x + \frac{2}{3}$$
|
|
|
|
|
|
|
|
$$L_3(x) = \prod_{j = 0, j \neq 3}^n \frac{x - x_j}{x_i - x_j} =
|
|
|
|
\frac{x - (-1)}{1 - (-1)} \cdot \frac{x - (-0.5)}{1 - (-0.5)} \cdot
|
|
|
|
\frac{x - 0.5}{1 - 0.5} = \frac{2}{3}x^3 + \frac{2}{3}x^2 -\frac{1}{6}x - \frac{1}{6}$$
|
|
|
|
|
|
|
|
$$p(x) = \sum_{i=0}^n y_i L_i(x) =
|
|
|
|
2 \cdot \left(-\frac{2}{3}x^3 + \frac{2}{3}x^2
|
|
|
|
+\frac{1}{6} x - \frac{1}{6}\right) +
|
|
|
|
1 \cdot \left(\frac{4}{3}x^3 - \frac{2}{3}x^2 - \frac{4}{3}x + \frac{2}{3}\right) +
|
|
|
|
$$$$
|
|
|
|
0.5 \cdot \left(-\frac{4}{3}x^3 - \frac{2}{3}x^2 + \frac{4}{3}x + \frac{2}{3}\right) +
|
|
|
|
0.4 \cdot \left(\frac{2}{3}x^3 + \frac{2}{3}x^2 -\frac{1}{6}x - \frac{1}{6}\right) = -\frac{2}{5}x^3 + \frac{3}{5}x^2 - \frac{2}{5}x + \frac{3}{5}$$
|
|
|
|
|
2020-05-16 13:37:49 +00:00
|
|
|
$$\frac{\max_{x \in [-1,1]} |f^{(n+1)}|}{4!} =
|
|
|
|
\frac{\max_{x \in [-1,1]}|\frac{768}{|2x+3|^6}|}{24} =
|
|
|
|
\max_{x \in [-1,1]}\frac{32}{|2x+3|^6} = 32$$
|
2020-05-14 13:52:49 +00:00
|
|
|
|
|
|
|
$$\max_{x \in [-1,1]} \left|(x - 1)\left(x - \frac{1}{2}\right)
|
|
|
|
\left(x + \frac{1}{2}\right)(x+1)\right| =
|
|
|
|
\max_{x \in [-1,1]} \left| x^4 - \frac{5}{4}x^2 + \frac{1}{4}\right| = \frac{1}{4}$$
|
|
|
|
|
2020-05-16 13:37:49 +00:00
|
|
|
$$\max_{x \in [-1,1]} |f(x) - p(x)| \leq \frac{\max_{x \in [-1,1]} |f^{(n+1)}|}{4!} \max_{x \in [-1,1]} \left|(x - 1)\left(x - \frac{1}{2}\right)
|
|
|
|
\left(x + \frac{1}{2}\right)(x+1)\right| =$$$$= 32 \cdot \frac{1}{4} = 8 \leq 8$$
|
2020-05-14 13:52:49 +00:00
|
|
|
|
|
|
|
The statement above is true so p satisfies the error estimate:
|
|
|
|
|
|
|
|
$$\max_{x \in [-1,1]} |f(x) - p(x)| \leq 8$$
|
2020-05-15 13:19:53 +00:00
|
|
|
|
|
|
|
\section*{Question 2}
|
|
|
|
|
|
|
|
We first use the Lagrange method:
|
|
|
|
|
|
|
|
$$L_1(x) = \prod_{j = 0, j \neq 1}^2 \frac{x - x_j}{x_i - x_j} =
|
|
|
|
\frac{x-0}{1-0} \frac{x-3}{1-3} = -\frac{1}{2}x^2 + \frac{3}{2}x$$
|
|
|
|
|
|
|
|
$$L_2(x) = \prod_{j = 0, j \neq 2}^2 \frac{x - x_j}{x_i - x_j} =
|
|
|
|
\frac{x-0}{3-0} \frac{x-1}{3-1} = \frac{1}{6}x^2 - \frac{1}{6}x $$
|
|
|
|
|
|
|
|
$$p(x) = (-3) \cdot \left(-\frac{1}{2}x^2 + \frac{3}{2}x\right) +
|
|
|
|
1 \cdot \left(\frac{1}{6}x^2 - \frac{1}{6}x\right) =
|
|
|
|
\frac{5}{3}x^2 - \frac{14}{3}x$$
|
|
|
|
|
|
|
|
Then we use the Newtonian method:
|
|
|
|
|
|
|
|
$$a_0 = f[0] = 0, \hspace{2cm} f[1] = -3 \hspace{2cm} f[3] = 1$$
|
|
|
|
$$a_1 = f[0,1] = \frac{-3-0}{1-0} = -3, \hspace{2cm} f[1,3] = \frac{1-(-3)}{3-1} = 2 $$
|
|
|
|
$$a_2 = f[0,1,3] = \frac{2-(-3)}{3-0} = \frac{5}{3}$$
|
|
|
|
|
|
|
|
$$p(x) = \left(\frac{5}{3}(x-1)-3\right) x + 0 = \frac{5}{3}x^2 - \frac{14}{3}x$$
|
|
|
|
|
|
|
|
The interpolating polynomials are indeed equal.
|
2020-05-16 11:58:14 +00:00
|
|
|
|
2020-05-16 13:37:49 +00:00
|
|
|
Now we use the Horner method to compute $p(0.5)$:
|
|
|
|
|
|
|
|
$$y=a_n = a_2 = \frac{5}{3}$$
|
|
|
|
|
|
|
|
$$i = 1$$
|
|
|
|
$$y = y (x - x_1) + a_1 = \frac{5}{3} (0.5 - 1) + a_1 - 3 = -\frac{5}{6} - 3 = -\frac{23}{6}$$
|
|
|
|
|
|
|
|
$$i = 0$$
|
|
|
|
$$y = y (x - x_0) + a_0 = -\frac{23}{6} \cdot 0.5 + 0 = -\frac{23}{12}$$
|
|
|
|
|
2020-05-16 11:58:14 +00:00
|
|
|
\section*{Question 4}
|
|
|
|
\subsection*{Point a)}
|
|
|
|
|
|
|
|
The node coordinates to which fix the quadratic spline are $(1/2, y_0), (1, y_1),(3/2, y_2),(2, y_3)$.
|
|
|
|
|
|
|
|
Then, we can start formulating the equations for the linear system:
|
|
|
|
|
|
|
|
$$y_0 = s\left(\frac{1}{2}\right) = a_{-1}B_2\left(\frac{1}{2} + 1\right) + a_{0}B_2\left(\frac{1}{2}\right) + a_{1}B_2\left(\frac{1}{2} - 1\right) + $$$$
|
|
|
|
+ a_{2}B_2\left(\frac{1}{2} - 2\right)
|
|
|
|
+ a_{-1}B_2\left(\frac{1}{2} - 3\right)
|
|
|
|
+ a_{0}B_2\left(\frac{1}{2} - 4\right)
|
|
|
|
+ a_{1}B_2\left(\frac{1}{2} - 5\right)=$$$$
|
|
|
|
a_{-1} \cdot 0 + a_{0} \cdot \frac{1}{2} + a_{1} \cdot \frac{1}{2} + a_{2} \cdot 0 + a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 = \frac{a_0 + a_1}{2}$$
|
|
|
|
|
|
|
|
$$y_1 = s\left(1\right) = a_{-1}B_2\left(1 + 1\right) + a_{0}B_2\left(1\right) + a_{1}B_2\left(1 - 1\right) + $$$$
|
|
|
|
+ a_{2}B_2\left(1 - 2\right)
|
|
|
|
+ a_{-1}B_2\left(1 - 3\right)
|
|
|
|
+ a_{0}B_2\left(1 - 4\right)
|
|
|
|
+ a_{1}B_2\left(1 - 5\right)=$$$$
|
|
|
|
a_{-1} \cdot 0 + a_{0} \cdot \left(\frac{1}{8}\right) + a_{1} \cdot \frac{3}{4} + a_{2} \cdot \left(\frac{1}{8}\right) + a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 =
|
|
|
|
\frac{1}{8} a_{0} + \frac{3}{4} a_{1} + \frac{1}{8} a_{2}$$
|
|
|
|
|
|
|
|
$$y_2 = s\left(\frac{3}{2}\right) = a_{-1}B_2\left(\frac{3}{2} + 1\right) + a_{0}B_2\left(\frac{3}{2}\right) + a_{1}B_2\left(\frac{3}{2} - 1\right) + $$$$
|
|
|
|
+ a_{2}B_2\left(\frac{3}{2} - 2\right)
|
|
|
|
+ a_{-1}B_2\left(\frac{3}{2} - 3\right)
|
|
|
|
+ a_{0}B_2\left(\frac{3}{2} - 4\right)
|
|
|
|
+ a_{1}B_2\left(\frac{3}{2} - 5\right)=$$$$
|
|
|
|
a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot \frac{1}{2} + a_{2} \cdot \frac{1}{2} + a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 = \frac{a_1 + a_2}{2}$$
|
|
|
|
|
|
|
|
$$y_3 = s\left(2\right) = a_{-1}B_2\left(2 + 1\right) + a_{0}B_2\left(2\right) + a_{1}B_2\left(2 - 1\right) + $$$$
|
|
|
|
+ a_{2}B_2\left(2 - 2\right)
|
|
|
|
+ a_{-1}B_2\left(2 - 3\right)
|
|
|
|
+ a_{0}B_2\left(2 - 4\right)
|
|
|
|
+ a_{1}B_2\left(2 - 5\right)=$$$$
|
|
|
|
a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot \left(\frac{1}{8}\right) + a_{2} \cdot \frac{3}{4} + a_{-1} \cdot \left(\frac{1}{8}\right) + a_{0} \cdot 0 + a_{1} \cdot 0 =
|
|
|
|
\frac{1}{8} a_{1} + \frac{3}{4} a_{2} + \frac{1}{8} a_{-1}$$
|
|
|
|
|
|
|
|
The linear system in matrix form is:
|
|
|
|
|
|
|
|
\[\frac{1}{8} \cdot
|
|
|
|
\begin{bmatrix}
|
|
|
|
4&4&0&0\\
|
|
|
|
1&6&1&0\\
|
|
|
|
0&4&4&0\\
|
|
|
|
0&1&6&1\\
|
|
|
|
\end{bmatrix}
|
|
|
|
\begin{bmatrix}
|
|
|
|
a_0\\a_1\\a_2\\a_{-1}\\
|
|
|
|
\end{bmatrix}
|
|
|
|
=
|
|
|
|
\begin{bmatrix}
|
|
|
|
y_0\\y_1\\y_2\\y_{3}\\
|
|
|
|
\end{bmatrix}\]
|
|
|
|
|
|
|
|
The determinant of that matrix is 0 so the matrix is singular.
|
|
|
|
|
|
|
|
\subsection*{Point b)}
|
|
|
|
|
|
|
|
The node coordinates to which fix the quadratic spline are $(0, y_0), (1, y_1),(2, y_2),(3, y_3)$.
|
|
|
|
|
|
|
|
Then, we can start formulating the equations for the linear system:
|
|
|
|
$$y_0 = s(0) = a_{-1}B_2\left(1\right) + a_{0}B_2\left(0\right) + a_{1}B_2\left(- 1\right) + $$$$
|
|
|
|
+ a_{2}B_2\left(- 2\right)
|
|
|
|
+ a_{-1}B_2\left(- 3\right)
|
|
|
|
+ a_{0}B_2\left(- 4\right)
|
|
|
|
+ a_{1}B_2\left(- 5\right)=$$$$
|
|
|
|
a_{-1} \cdot \frac{1}{8} + a_{0} \cdot \frac{3}{4} + a_{1} \cdot \frac{1}{8} + a_{2} \cdot 0 + a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 =
|
|
|
|
\frac{1}{8} a_{-1} + \frac{3}{4} a_{0} + \frac{1}{8} a_{1}$$
|
|
|
|
|
|
|
|
$$y_1 = s\left(1\right) = \frac{1}{8} a_{0} + \frac{3}{4} a_{1} + \frac{1}{8} a_{2}$$
|
|
|
|
|
|
|
|
$$y_2 = s\left(2\right) = \frac{1}{8} a_{1} + \frac{3}{4} a_{2} + \frac{1}{8} a_{-1}$$
|
|
|
|
|
|
|
|
$$y_3 = s\left(3\right) = a_{-1}B_2\left(3 + 1\right) + a_{0}B_2\left(3\right) + a_{1}B_2\left(3 - 1\right) + $$$$
|
|
|
|
+ a_{2}B_2\left(3 - 2\right)
|
|
|
|
+ a_{-1}B_2\left(3 - 3\right)
|
|
|
|
+ a_{0}B_2\left(3 - 4\right)
|
|
|
|
+ a_{1}B_2\left(3 - 5\right)=$$$$
|
|
|
|
a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 + a_{2} \cdot \frac{1}{8} + a_{-1} \cdot \frac{3}{4} + a_{0} \cdot \frac{1}{8} + a_{1} \cdot 0 =
|
|
|
|
\frac{1}{8} a_{2} + \frac{3}{4} a_{-1} + \frac{1}{8} a_{0}$$
|
|
|
|
|
|
|
|
The linear system in matrix form is:
|
|
|
|
|
|
|
|
\[\frac{1}{8} \cdot
|
|
|
|
\begin{bmatrix}
|
|
|
|
6&1&0&1\\
|
|
|
|
1&6&1&0\\
|
|
|
|
0&1&6&1\\
|
|
|
|
1&0&1&6\\
|
|
|
|
\end{bmatrix}
|
|
|
|
\begin{bmatrix}
|
|
|
|
a_0\\a_1\\a_2\\a_{-1}\\
|
|
|
|
\end{bmatrix}
|
|
|
|
=
|
|
|
|
\begin{bmatrix}
|
|
|
|
y_0\\y_1\\y_2\\y_{3}\\
|
|
|
|
\end{bmatrix}\]
|
|
|
|
|
2020-05-16 13:37:49 +00:00
|
|
|
\subsection*{Question 5}
|
|
|
|
|
|
|
|
$$1 = y_0 = s(x_0) = 0 = a_{-1}B_3(1) +a_0B_3(0)
|
|
|
|
+a_1B_3(-1)
|
|
|
|
+a_2B_3(-2)
|
|
|
|
+a_3B_3(-3) = \frac{1}{6}a_{-1} + \frac{2}{3}a_0 + \frac{1}{6}a_1$$
|
|
|
|
|
|
|
|
$$5 = y_1 = s(x_1) = 1 = a_{-1}B_3(2) +a_0B_3(1)
|
|
|
|
+a_1B_3(0)
|
|
|
|
+a_2B_3(-1)
|
|
|
|
+a_3B_3(-2) = \frac{1}{6}a_{0} + \frac{2}{3}a_1 + \frac{1}{6}a_2$$
|
|
|
|
|
|
|
|
$$1 = y_2 = s(x_2) = 2 = a_{-1}B_3(3) +a_0B_3(2)
|
|
|
|
+a_1B_3(1)
|
|
|
|
+a_2B_3(0)
|
|
|
|
+a_3B_3(-1) = \frac{1}{6}a_{1} + \frac{2}{3}a_2 + \frac{1}{6}a_3$$
|
|
|
|
|
|
|
|
$$s''(0) = a_{-1}B''_3(1) +a_0B''_3(0)
|
|
|
|
+a_1B''_3(-1)
|
|
|
|
+a_2B''_3(-2)
|
|
|
|
+a_3B''_3(-3) = a_{-1} - 2 a_0 + a_{1}$$
|
|
|
|
|
|
|
|
$$s''(2) = a_{-1}B''_3(3) +a_0B''_3(2)
|
|
|
|
+a_1B''_3(1)
|
|
|
|
+a_2B''_3(-0)
|
|
|
|
+a_3B''_3(-1) = a_{1} - 2 a_2 + a_{3}$$
|
|
|
|
|
|
|
|
\[\frac{1}{6} \cdot
|
|
|
|
\begin{bmatrix}
|
|
|
|
1&-2&1&0&0\\
|
|
|
|
1&4&1&0&0\\
|
|
|
|
0&1&4&1&0\\
|
|
|
|
0&0&1&4&1\\
|
|
|
|
0&0&1&-2&1\\
|
|
|
|
\end{bmatrix}
|
|
|
|
\begin{bmatrix}
|
|
|
|
a_{-1}\\a_0\\a_1\\a_2\\a_3\\
|
|
|
|
\end{bmatrix}
|
|
|
|
=
|
|
|
|
\begin{bmatrix}
|
|
|
|
0\\y_0\\y_1\\y_2\\0\\
|
|
|
|
\end{bmatrix}\]
|
|
|
|
|
|
|
|
We then use Gaussian \textit{ellimination} to solve the system.
|
|
|
|
|
|
|
|
\[
|
|
|
|
\begin{array}{@{}ccccc|c@{}}
|
|
|
|
1&-2&1&0&0&0\\
|
|
|
|
1&4&1&0&0&6\\
|
|
|
|
0&1&4&1&0&30\\
|
|
|
|
0&0&1&4&1&6\\
|
|
|
|
0&0&1&-2&1&0\\
|
|
|
|
\end{array}
|
|
|
|
\qquad
|
|
|
|
\begin{array}{@{}ccccc|c@{}}
|
|
|
|
1&-2&1&0&0&0\\
|
|
|
|
0&6&0&0&0&6\\
|
|
|
|
0&1&4&1&0&30\\
|
|
|
|
0&0&1&4&1&6\\
|
|
|
|
0&0&1&-2&1&0\\
|
|
|
|
\end{array}
|
|
|
|
\qquad
|
|
|
|
\begin{array}{@{}ccccc|c@{}}
|
|
|
|
1&-2&1&0&0&0\\
|
|
|
|
0&1&4&1&0&30\\
|
|
|
|
0&6&0&0&0&6\\
|
|
|
|
0&0&1&4&1&6\\
|
|
|
|
0&0&1&-2&1&0\\
|
|
|
|
\end{array}
|
|
|
|
\]
|
|
|
|
\[
|
|
|
|
\begin{array}{@{}ccccc|c@{}}
|
|
|
|
1&0&9&2&0&60\\
|
|
|
|
0&1&4&1&0&30\\
|
|
|
|
0&0&-24&-6&0&-174\\
|
|
|
|
0&0&1&4&1&6\\
|
|
|
|
0&0&1&-2&1&0\\
|
|
|
|
\end{array}
|
|
|
|
\qquad
|
|
|
|
\begin{array}{@{}ccccc|c@{}}
|
|
|
|
1&0&9&2&0&60\\
|
|
|
|
0&1&4&1&0&30\\
|
|
|
|
0&0&1&4&1&6\\
|
|
|
|
0&0&-24&-6&0&-174\\
|
|
|
|
0&0&1&-2&1&0\\
|
|
|
|
\end{array}
|
|
|
|
\qquad
|
|
|
|
\begin{array}{@{}ccccc|c@{}}
|
|
|
|
1&0&0&-34&-9&6\\
|
|
|
|
0&1&0&-15&-4&6\\
|
|
|
|
0&0&1&4&1&6\\
|
|
|
|
0&0&0&90&24&-30\\
|
|
|
|
0&0&0&6&0&-6\\
|
|
|
|
\end{array}
|
|
|
|
\]
|
|
|
|
\[
|
|
|
|
\begin{array}{@{}ccccc|c@{}}
|
|
|
|
1&0&0&-34&-9&6\\
|
|
|
|
0&1&0&-15&-4&6\\
|
|
|
|
0&0&1&4&1&6\\
|
|
|
|
0&0&0&1&4/15&-1/3\\
|
|
|
|
0&0&0&6&0&-6\\
|
|
|
|
\end{array}
|
|
|
|
\qquad
|
|
|
|
\begin{array}{@{}ccccc|c@{}}
|
|
|
|
1 & 0 & 0 & 0 & 1/15 & -16/3 \\
|
|
|
|
0 & 1 & 0 & 0 & 0 & 1 \\
|
|
|
|
0 & 0 & 1 & 0 & -1/15 & 22/3 \\
|
|
|
|
0 & 0 & 0 & 1 & 4/15 & -1/3 \\
|
|
|
|
0 & 0 & 0 & 0 & 8/5 & -8 \\
|
|
|
|
\end{array}
|
|
|
|
\qquad
|
|
|
|
\begin{array}{@{}ccccc|c@{}}
|
|
|
|
1 & 0 & 0 & 0 & 0 & -5 \\
|
|
|
|
0 & 1 & 0 & 0 & 0 & 1 \\
|
|
|
|
0 & 0 & 1 & 0 & 0 & 7 \\
|
|
|
|
0 & 0 & 0 & 1 & 0 & 1 \\
|
|
|
|
0 & 0 & 0 & 0 & 1 & -5 \\
|
|
|
|
\end{array}
|
|
|
|
\]
|
|
|
|
|
|
|
|
Therefore, the coefficients are $a_{-1} = a_3 = -5$, $a_0 = a_2 = 1$, and $a_1 = 7$.
|
2020-05-14 13:52:49 +00:00
|
|
|
\end{document}
|