wip midterm

This commit is contained in:
Claudio Maggioni 2020-04-02 23:44:15 +02:00
parent a79701a817
commit 1a4c732113
2 changed files with 20 additions and 0 deletions

Binary file not shown.

View file

@ -336,4 +336,24 @@ x =
0 \\ 0 \\ 0 \\ 0 \\ 0 \\
\end{bmatrix}
\]
\section*{Question 5}
\subsection*{Point a)}
$$f(x) = x \hspace{2cm} K_{abs} = |f'(x)| = 1 \hspace{2cm} K_{rel} = \left|\frac{1 \cdot x}{x}\right| = 1$$
\subsection*{Point b)}
$$f(x) = \sqrt[3]{x} \hspace{2cm} K_{abs} = |f'(x)| = \frac{1}{3\sqrt[3]{x^2}} \hspace{2cm}
K_{rel} = \left|\frac{1}{3\sqrt[3]{x^2}} \cdot \frac{x}{\sqrt[3]{x}}\right| = \frac{1}{3}$$
\subsection*{Point c)}
$$f(x) = \frac{1}{x} \hspace{2cm} K_{abs} = |f'(x)| = \frac{1}{x^2} \hspace{2cm}
K_{rel} = \left|\frac{-x}{x^2} \cdot \frac{1}{\frac{1}{x}}\right| = 1$$
\subsection*{Point d)}
$$f(x) = e^x \hspace{2cm} K_{abs} = |f'(x)| = e^x \hspace{2cm}
K_{rel} = \left|\frac{xe^x}{e^x}\right| = |x|$$
\subsection*{Point e)}
Cases \textit{a)},\textit{b)} and \textit{c)} are well-conditioned for any $x$ since their $K_rel$
is not defined by x. Case \textit{d)} is well-conditioned only for $x$s whose absolute value is in the order of magnitude of $1$ or less, since $K_rel$ in this case is exactly $|x|$.
\end{document}