diff --git a/midterm/midterm.pdf b/midterm/midterm.pdf index 068e7aa..3b682b1 100644 Binary files a/midterm/midterm.pdf and b/midterm/midterm.pdf differ diff --git a/midterm/midterm.tex b/midterm/midterm.tex index ce61a61..981729e 100644 --- a/midterm/midterm.tex +++ b/midterm/midterm.tex @@ -67,19 +67,27 @@ $$ \frac{1}{x} - \frac{1}{x+1} = \frac{x + 1 - x}{x^2 + x} = \frac{1}{x^2 + x}$$ \section*{Question 3} \subsection*{Point a)} -First we point out that: -$$ \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \stackrel{k := -h}{=} \lim_{k \to 0} \frac{f(x - (-k)) - f(x)}{-k} = $$ -$$ = \lim_{k \to 0} \frac{f(x) - f(x + k)}{k} = - \lim_{h \to 0} \frac{f(x) - f(x - h)}{h} $$ + +Consider the Taylor expansion with $a=x$ of $f(x+h)$ and $f(x-h)$: + +$$f(x+h) \geq f(x) + \frac{f'(x)}{1}\cdot h + \frac{f''(x)}{2}\cdot h^2 + +\frac{f'''(x)}{6}\cdot h^3$$ + + $$f(x-h) \geq f(x) - \frac{f'(x)}{1}\cdot h + \frac{f''(x)}{2}\cdot h^2 - +\frac{f'''(x)}{6}\cdot h^3 $$ -Then, we find an equivalent way to represent $f'(x)$: -$$ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = 2 \cdot \lim_{h \to 0} \frac{f(x + h) - f(x)}{2h} =$$ -$$ = \lim_{h \to 0} \frac{f(x + h) - f(x)}{2h} + \left(- \lim_{h \to 0} \frac{f(x) - f(x - h)}{2h}\right) = \lim_{h \to 0} \frac{f(x + h) - f(x - h)}{2h} $$ +Then, we can derive that: -Then we consider the \textit{epsilon-delta} definition of limits for the last limit: -$$ \forall \epsilon > 0 \exists \delta > 0 | \forall h > 0, \text{if } 0 < h < \delta \Rightarrow$$ -$$\left| \frac{f(x + h) - f(x - h)}{2h} - f'(x)\right| = \left|f'(x) - \frac{f(x + h) - f(x - h)}{2h}\right| < \epsilon$$ +$$\frac{f(x + h) - f(x - h)}{2h} \geq +\frac{1}{2h} \cdot +\left(2hf'(x) + \frac{2h^3f'''(x)}{6} \right) = +f'(x) + \frac{h^2f'''(x)}{6} +$$ -I GIVE UP :( +So: + +$$ \left|f'(x) - \frac{f(x + h) - f(x - h)}{2h}\right| \leq \left|f'(x) - \left(f'(x) + \frac{h^2f'''(x)}{6}\right) +\right| = \frac{h^2|f'''(x)|}{6}$$ \section*{Question 4} \subsection*{Point a)}