hw4: preparing for submission
This commit is contained in:
parent
631cd8d993
commit
2d2ad2a07d
2 changed files with 35 additions and 25 deletions
BIN
hw4/hw4.pdf
BIN
hw4/hw4.pdf
Binary file not shown.
60
hw4/hw4.tex
60
hw4/hw4.tex
|
@ -89,7 +89,7 @@ $$y = y (x - x_0) + a_0 = -\frac{23}{6} \cdot 0.5 + 0 = -\frac{23}{12}$$
|
|||
\section*{Question 4}
|
||||
\subsection*{Point a)}
|
||||
|
||||
The node coordinates to which fix the quadratic spline are $(1/2, y_0), (1, y_1),(3/2, y_2),(2, y_3)$.
|
||||
The node coordinates to which fix the quadratic spline are $(1/2, y_0), (3/2, y_1),(5/2, y_2),(7/2, y_3)$.
|
||||
|
||||
Then, we can start formulating the equations for the linear system:
|
||||
|
||||
|
@ -100,40 +100,38 @@ $$y_0 = s\left(\frac{1}{2}\right) = a_{-1}B_2\left(\frac{1}{2} + 1\right) + a_{0
|
|||
+ a_{1}B_2\left(\frac{1}{2} - 5\right)=$$$$
|
||||
a_{-1} \cdot 0 + a_{0} \cdot \frac{1}{2} + a_{1} \cdot \frac{1}{2} + a_{2} \cdot 0 + a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 = \frac{a_0 + a_1}{2}$$
|
||||
|
||||
$$y_1 = s\left(1\right) = a_{-1}B_2\left(1 + 1\right) + a_{0}B_2\left(1\right) + a_{1}B_2\left(1 - 1\right) + $$$$
|
||||
+ a_{2}B_2\left(1 - 2\right)
|
||||
+ a_{-1}B_2\left(1 - 3\right)
|
||||
+ a_{0}B_2\left(1 - 4\right)
|
||||
+ a_{1}B_2\left(1 - 5\right)=$$$$
|
||||
a_{-1} \cdot 0 + a_{0} \cdot \left(\frac{1}{8}\right) + a_{1} \cdot \frac{3}{4} + a_{2} \cdot \left(\frac{1}{8}\right) + a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 =
|
||||
\frac{1}{8} a_{0} + \frac{3}{4} a_{1} + \frac{1}{8} a_{2}$$
|
||||
|
||||
$$y_2 = s\left(\frac{3}{2}\right) = a_{-1}B_2\left(\frac{3}{2} + 1\right) + a_{0}B_2\left(\frac{3}{2}\right) + a_{1}B_2\left(\frac{3}{2} - 1\right) + $$$$
|
||||
$$y_1 = s\left(\frac{3}{2}\right) = a_{-1}B_2\left(\frac{3}{2} + 1\right) + a_{0}B_2\left(\frac{3}{2}\right) + a_{1}B_2\left(\frac{3}{2} - 1\right) + $$$$
|
||||
+ a_{2}B_2\left(\frac{3}{2} - 2\right)
|
||||
+ a_{-1}B_2\left(\frac{3}{2} - 3\right)
|
||||
+ a_{0}B_2\left(\frac{3}{2} - 4\right)
|
||||
+ a_{1}B_2\left(\frac{3}{2} - 5\right)=$$$$
|
||||
a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot \frac{1}{2} + a_{2} \cdot \frac{1}{2} + a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 = \frac{a_1 + a_2}{2}$$
|
||||
|
||||
$$y_3 = s\left(2\right) = a_{-1}B_2\left(2 + 1\right) + a_{0}B_2\left(2\right) + a_{1}B_2\left(2 - 1\right) + $$$$
|
||||
+ a_{2}B_2\left(2 - 2\right)
|
||||
+ a_{-1}B_2\left(2 - 3\right)
|
||||
+ a_{0}B_2\left(2 - 4\right)
|
||||
+ a_{1}B_2\left(2 - 5\right)=$$$$
|
||||
a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot \left(\frac{1}{8}\right) + a_{2} \cdot \frac{3}{4} + a_{-1} \cdot \left(\frac{1}{8}\right) + a_{0} \cdot 0 + a_{1} \cdot 0 =
|
||||
\frac{1}{8} a_{1} + \frac{3}{4} a_{2} + \frac{1}{8} a_{-1}$$
|
||||
$$y_2 = s\left(\frac{5}{2}\right) = a_{-1}B_2\left(\frac{5}{2} + 1\right) + a_{0}B_2\left(\frac{5}{2}\right) + a_{1}B_2\left(\frac{5}{2} - 1\right) + $$$$
|
||||
+ a_{2}B_2\left(\frac{5}{2} - 2\right)
|
||||
+ a_{-1}B_2\left(\frac{5}{2} - 3\right)
|
||||
+ a_{0}B_2\left(\frac{5}{2} - 4\right)
|
||||
+ a_{1}B_2\left(\frac{5}{2} - 5\right)=$$$$
|
||||
a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 + a_{2} \cdot \frac{1}{2} + a_{-1} \cdot \frac{1}{2} + a_{0} \cdot 0 + a_{1} \cdot 0 = \frac{a_2 + a_{-1}}{2}$$
|
||||
|
||||
$$y_1 = s\left(\frac{7}{2}\right) = a_{-1}B_2\left(\frac{7}{2} + 1\right) + a_{0}B_2\left(\frac{7}{2}\right) + a_{1}B_2\left(\frac{7}{2} - 1\right) + $$$$
|
||||
+ a_{2}B_2\left(\frac{7}{2} - 2\right)
|
||||
+ a_{-1}B_2\left(\frac{7}{2} - 3\right)
|
||||
+ a_{0}B_2\left(\frac{7}{2} - 4\right)
|
||||
+ a_{1}B_2\left(\frac{7}{2} - 5\right)=$$$$
|
||||
a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 + a_{2} \cdot 0 + a_{-1} \cdot \frac{1}{2} + a_{0} \cdot \frac{1}{2} + a_{1} \cdot 0 = \frac{a_{-1} + a_0}{2}$$
|
||||
|
||||
The linear system in matrix form is:
|
||||
|
||||
\[\frac{1}{8} \cdot
|
||||
\[\frac{1}{2} \cdot
|
||||
\begin{bmatrix}
|
||||
4&4&0&0\\
|
||||
1&6&1&0\\
|
||||
0&4&4&0\\
|
||||
0&1&6&1\\
|
||||
0&1&1&0\\
|
||||
0&0&1&1\\
|
||||
1&0&0&1\\
|
||||
1&1&0&0\\
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
a_0\\a_1\\a_2\\a_{-1}\\
|
||||
a_{-1}\\a_0\\a_1\\a_2\\
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
|
@ -155,9 +153,21 @@ $$y_0 = s(0) = a_{-1}B_2\left(1\right) + a_{0}B_2\left(0\right) + a_{1}B_2\left(
|
|||
a_{-1} \cdot \frac{1}{8} + a_{0} \cdot \frac{3}{4} + a_{1} \cdot \frac{1}{8} + a_{2} \cdot 0 + a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 =
|
||||
\frac{1}{8} a_{-1} + \frac{3}{4} a_{0} + \frac{1}{8} a_{1}$$
|
||||
|
||||
$$y_1 = s\left(1\right) = \frac{1}{8} a_{0} + \frac{3}{4} a_{1} + \frac{1}{8} a_{2}$$
|
||||
$$y_1 = s\left(1\right) = a_{-1}B_2\left(1 + 1\right) + a_{0}B_2\left(1\right) + a_{1}B_2\left(1 - 1\right) + $$$$
|
||||
+ a_{2}B_2\left(1 - 2\right)
|
||||
+ a_{-1}B_2\left(1 - 3\right)
|
||||
+ a_{0}B_2\left(1 - 4\right)
|
||||
+ a_{1}B_2\left(1 - 5\right)=$$$$
|
||||
a_{-1} \cdot 0 + a_{0} \cdot \left(\frac{1}{8}\right) + a_{1} \cdot \frac{3}{4} + a_{2} \cdot \left(\frac{1}{8}\right) + a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 =
|
||||
\frac{1}{8} a_{0} + \frac{3}{4} a_{1} + \frac{1}{8} a_{2}$$
|
||||
|
||||
$$y_2 = s\left(2\right) = \frac{1}{8} a_{1} + \frac{3}{4} a_{2} + \frac{1}{8} a_{-1}$$
|
||||
$$y_2 = s\left(2\right) = a_{-1}B_2\left(2 + 1\right) + a_{0}B_2\left(2\right) + a_{1}B_2\left(2 - 1\right) + $$$$
|
||||
+ a_{2}B_2\left(2 - 2\right)
|
||||
+ a_{-1}B_2\left(2 - 3\right)
|
||||
+ a_{0}B_2\left(2 - 4\right)
|
||||
+ a_{1}B_2\left(2 - 5\right)=$$$$
|
||||
a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot \left(\frac{1}{8}\right) + a_{2} \cdot \frac{3}{4} + a_{-1} \cdot \left(\frac{1}{8}\right) + a_{0} \cdot 0 + a_{1} \cdot 0 =
|
||||
\frac{1}{8} a_{1} + \frac{3}{4} a_{2} + \frac{1}{8} a_{-1}$$
|
||||
|
||||
$$y_3 = s\left(3\right) = a_{-1}B_2\left(3 + 1\right) + a_{0}B_2\left(3\right) + a_{1}B_2\left(3 - 1\right) + $$$$
|
||||
+ a_{2}B_2\left(3 - 2\right)
|
||||
|
|
Reference in a new issue