hw4: ex1 and ex3 done
This commit is contained in:
parent
7f310bd0de
commit
b881fdd21c
1 changed files with 67 additions and 65 deletions
|
@ -1,4 +1,4 @@
|
||||||
%% Assignment 2
|
%% Assignment 4
|
||||||
% Name: Claudio Maggioni
|
% Name: Claudio Maggioni
|
||||||
%
|
%
|
||||||
% Date: 19/3/2019
|
% Date: 19/3/2019
|
||||||
|
@ -15,74 +15,76 @@
|
||||||
%
|
%
|
||||||
|
|
||||||
%% Problem 3
|
%% Problem 3
|
||||||
format long
|
clear;
|
||||||
A = [4 3 2 1; 8 8 5 2; 16 12 10 5; 32 24 20 11];
|
|
||||||
[L,U,P] = pivotedOuterProductLU(A);
|
|
||||||
display(L);
|
|
||||||
display(U);
|
|
||||||
display(P);
|
|
||||||
|
|
||||||
%% Problem 6
|
n=10;
|
||||||
[X,Y] = meshgrid((0:2000)/2000);
|
f = @(x) (exp(-(x^2)/2)/sqrt(2*pi));
|
||||||
A = exp(-sqrt((X-Y).^2));
|
x_5 = computeEquidistantXs(5);
|
||||||
L = outerProductCholesky(A);
|
x_10 = computeEquidistantXs(10);
|
||||||
disp(norm(L*L'-A, 'fro'));
|
x_5c = computeChebyshevXs(5);
|
||||||
|
x_10c = computeChebyshevXs(10);
|
||||||
|
|
||||||
%% Problem 3 (continued)
|
xe = (-1:0.01:1)';
|
||||||
|
y = zeros(size(xe));
|
||||||
|
for i = 1:size(xe, 1)
|
||||||
|
y(i) = f(xe(i));
|
||||||
|
end
|
||||||
|
|
||||||
function [L,U,P] = pivotedOuterProductLU(A)
|
p_5 = computePolypoints(f, xe, x_5, 5);
|
||||||
dimensions = size(A);
|
p_10 = computePolypoints(f, xe, x_10, 10);
|
||||||
n = dimensions(1);
|
|
||||||
|
|
||||||
p = 1:n;
|
p_5c = computePolypoints(f, xe, x_5c, 5);
|
||||||
L = zeros(n);
|
p_10c = computePolypoints(f, xe, x_10c, 10);
|
||||||
U = zeros(n);
|
|
||||||
|
|
||||||
|
figure;
|
||||||
|
subplot(1,2,1);
|
||||||
|
plot(xe, p_5, xe, p_10, xe, y);
|
||||||
|
subplot(1,2,2);
|
||||||
|
plot(xe, p_5c, xe, p_10c, xe, y);
|
||||||
|
|
||||||
|
function x = computeEquidistantXs(n)
|
||||||
|
x = zeros(2*n+1,1);
|
||||||
|
for i = 1:2*n+1
|
||||||
|
x(i) = (i-n-1)/n;
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
function x = computeChebyshevXs(n)
|
||||||
|
x = zeros(2*n+1,1);
|
||||||
|
for i = 1:2*n+1
|
||||||
|
x(i) = cos((2*i - 1) *pi / (4*n + 2));
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
function p = computePolypoints(f, xe, x, n)
|
||||||
|
p = zeros(size(xe));
|
||||||
|
|
||||||
|
for i = 1:(2*n+1)
|
||||||
|
e_i = zeros(2*n+1, 1);
|
||||||
|
e_i(i) = 1;
|
||||||
|
N = NewtonInterpolation(x, e_i);
|
||||||
|
p = p + f(x(i)) * HornerNewton(N, x, xe);
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
% Assuming x and y are column vectors with the same length
|
||||||
|
function N = NewtonInterpolation (x,y)
|
||||||
|
n = size(x, 1);
|
||||||
|
N = y;
|
||||||
for i = 1:n
|
for i = 1:n
|
||||||
values = A(:,i);
|
N(n:-1:i+1) = (N(n:-1:i+1) - N(n-1:-1:i)) ./ (x(n:-1:i+1) - x(n-i:-1:1));
|
||||||
values(values == 0) = -Inf;
|
end
|
||||||
[~, p_k] = max(values);
|
end
|
||||||
k = find(p == p_k);
|
|
||||||
|
% N is the array of coefficients
|
||||||
if k == -Inf
|
%
|
||||||
disp("Matrix is singular");
|
% xi evaluation points
|
||||||
L = [];
|
function p = HornerNewton(N, x, xe)
|
||||||
U = [];
|
n = size(x, 1);
|
||||||
P = [];
|
p = ones(size(xe, 1), 1) * N(n);
|
||||||
return
|
for i = n-1:-1:1
|
||||||
end
|
p = p .* (xe - x(i)) + N(i);
|
||||||
|
|
||||||
p(k) = p(i);
|
|
||||||
p(i) = p_k;
|
|
||||||
|
|
||||||
L(:,i) = A(:,i) / A(p(i),i);
|
|
||||||
U(i,:) = A(p(i),:);
|
|
||||||
A = A - L(:,i) * U(i,:);
|
|
||||||
end
|
|
||||||
|
|
||||||
I = eye(n);
|
|
||||||
P = zeros(n);
|
|
||||||
for i = 1:n
|
|
||||||
P(:,i) = I(:,p(i));
|
|
||||||
end
|
|
||||||
P = transpose(P);
|
|
||||||
L = P * L;
|
|
||||||
end
|
|
||||||
|
|
||||||
%% Problem 6 (continued)
|
|
||||||
|
|
||||||
function [L] = outerProductCholesky(A)
|
|
||||||
if ~all(eig(A) >= 0)
|
|
||||||
disp("matrix is not positive definite");
|
|
||||||
L = [];
|
|
||||||
return;
|
|
||||||
end
|
|
||||||
dimensions = size(A);
|
|
||||||
n = dimensions(1);
|
|
||||||
L = zeros(n);
|
|
||||||
|
|
||||||
for i = 1:n
|
|
||||||
L(:, i) = A(:, i) / sqrt(A(i,i));
|
|
||||||
A = A - L(:, i) * transpose(L(:, i));
|
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
Reference in a new issue