% vim: set ts=2 sw=2 et tw=80: \documentclass[12pt,a4paper]{article} \usepackage[utf8]{inputenc} \usepackage[margin=2cm]{geometry} \usepackage{amstext} \usepackage{amsmath} \usepackage{array} \newcommand{\lra}{\Leftrightarrow} \title{Howework 4 -- Introduction to Computational Science} \author{Claudio Maggioni} \begin{document} \maketitle \section*{Question 1} $$L_0(x) = \prod_{j = 0, j \neq 0}^n \frac{x - x_j}{x_i - x_j} = \frac{x - (-0.5)}{(-1) - (-0.5)} \cdot \frac{x - 0.5}{(-1) - 0.5} \cdot \frac{x - 1}{(-1) - 1} = -\frac{2}{3}x^3 + \frac{2}{3}x^2 +\frac{1}{6} x - \frac{1}{6}$$ $$L_1(x) = \prod_{j = 0, j \neq 1}^n \frac{x - x_j}{x_i - x_j} = \frac{x - (-1)}{(-0.5) - (-1)} \cdot \frac{x - 0.5}{(-0.5) - 0.5} \cdot \frac{x - 1}{(-0.5) - 1} = \frac{4}{3}x^3 - \frac{2}{3}x^2 - \frac{4}{3}x + \frac{2}{3}$$ $$L_2(x) = \prod_{j = 0, j \neq 2}^n \frac{x - x_j}{x_i - x_j} = \frac{x - (-1)}{0.5 - (-1)} \cdot \frac{x - (-0.5)}{0.5 - (-0.5)} \cdot \frac{x - 1}{0.5 - 1} = -\frac{4}{3}x^3 - \frac{2}{3}x^2 + \frac{4}{3}x + \frac{2}{3}$$ $$L_3(x) = \prod_{j = 0, j \neq 3}^n \frac{x - x_j}{x_i - x_j} = \frac{x - (-1)}{1 - (-1)} \cdot \frac{x - (-0.5)}{1 - (-0.5)} \cdot \frac{x - 0.5}{1 - 0.5} = \frac{2}{3}x^3 + \frac{2}{3}x^2 -\frac{1}{6}x - \frac{1}{6}$$ $$p(x) = \sum_{i=0}^n y_i L_i(x) = 2 \cdot \left(-\frac{2}{3}x^3 + \frac{2}{3}x^2 +\frac{1}{6} x - \frac{1}{6}\right) + 1 \cdot \left(\frac{4}{3}x^3 - \frac{2}{3}x^2 - \frac{4}{3}x + \frac{2}{3}\right) + $$$$ 0.5 \cdot \left(-\frac{4}{3}x^3 - \frac{2}{3}x^2 + \frac{4}{3}x + \frac{2}{3}\right) + 0.4 \cdot \left(\frac{2}{3}x^3 + \frac{2}{3}x^2 -\frac{1}{6}x - \frac{1}{6}\right) = -\frac{2}{5}x^3 + \frac{3}{5}x^2 - \frac{2}{5}x + \frac{3}{5}$$ $$\frac{\max_{x \in [-1,1]} |f^{(n+1)}|}{4!} = \frac{\max_{x \in [-1,1]}|\frac{768}{|2x+3|^6}|}{24} = \max_{x \in [-1,1]}\frac{32}{|2x+3|^6} = 32$$ $$\max_{x \in [-1,1]} \left|(x - 1)\left(x - \frac{1}{2}\right) \left(x + \frac{1}{2}\right)(x+1)\right| = \max_{x \in [-1,1]} \left| x^4 - \frac{5}{4}x^2 + \frac{1}{4}\right| = \frac{1}{4}$$ $$\max_{x \in [-1,1]} |f(x) - p(x)| \leq \frac{\max_{x \in [-1,1]} |f^{(n+1)}|}{4!} \max_{x \in [-1,1]} \left|(x - 1)\left(x - \frac{1}{2}\right) \left(x + \frac{1}{2}\right)(x+1)\right| =$$$$= 32 \cdot \frac{1}{4} = 8 \leq 8$$ The statement above is true so p satisfies the error estimate: $$\max_{x \in [-1,1]} |f(x) - p(x)| \leq 8$$ \section*{Question 2} We first use the Lagrange method: $$L_1(x) = \prod_{j = 0, j \neq 1}^2 \frac{x - x_j}{x_i - x_j} = \frac{x-0}{1-0} \frac{x-3}{1-3} = -\frac{1}{2}x^2 + \frac{3}{2}x$$ $$L_2(x) = \prod_{j = 0, j \neq 2}^2 \frac{x - x_j}{x_i - x_j} = \frac{x-0}{3-0} \frac{x-1}{3-1} = \frac{1}{6}x^2 - \frac{1}{6}x $$ $$p(x) = (-3) \cdot \left(-\frac{1}{2}x^2 + \frac{3}{2}x\right) + 1 \cdot \left(\frac{1}{6}x^2 - \frac{1}{6}x\right) = \frac{5}{3}x^2 - \frac{14}{3}x$$ Then we use the Newtonian method: $$a_0 = f[0] = 0, \hspace{2cm} f[1] = -3 \hspace{2cm} f[3] = 1$$ $$a_1 = f[0,1] = \frac{-3-0}{1-0} = -3, \hspace{2cm} f[1,3] = \frac{1-(-3)}{3-1} = 2 $$ $$a_2 = f[0,1,3] = \frac{2-(-3)}{3-0} = \frac{5}{3}$$ $$p(x) = \left(\frac{5}{3}(x-1)-3\right) x + 0 = \frac{5}{3}x^2 - \frac{14}{3}x$$ The interpolating polynomials are indeed equal. Now we use the Horner method to compute $p(0.5)$: $$y=a_n = a_2 = \frac{5}{3}$$ $$i = 1$$ $$y = y (x - x_1) + a_1 = \frac{5}{3} (0.5 - 1) + a_1 - 3 = -\frac{5}{6} - 3 = -\frac{23}{6}$$ $$i = 0$$ $$y = y (x - x_0) + a_0 = -\frac{23}{6} \cdot 0.5 + 0 = -\frac{23}{12}$$ \section*{Question 4} \subsection*{Point a)} The node coordinates to which fix the quadratic spline are $(1/2, y_0), (3/2, y_1),(5/2, y_2),(7/2, y_3)$. Then, we can start formulating the equations for the linear system: $$y_0 = s\left(\frac{1}{2}\right) = a_{-1}B_2\left(\frac{1}{2} + 1\right) + a_{0}B_2\left(\frac{1}{2}\right) + a_{1}B_2\left(\frac{1}{2} - 1\right) + $$$$ + a_{2}B_2\left(\frac{1}{2} - 2\right) + a_{-1}B_2\left(\frac{1}{2} - 3\right) + a_{0}B_2\left(\frac{1}{2} - 4\right) + a_{1}B_2\left(\frac{1}{2} - 5\right)=$$$$ a_{-1} \cdot 0 + a_{0} \cdot \frac{1}{2} + a_{1} \cdot \frac{1}{2} + a_{2} \cdot 0 + a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 = \frac{a_0 + a_1}{2}$$ $$y_1 = s\left(\frac{3}{2}\right) = a_{-1}B_2\left(\frac{3}{2} + 1\right) + a_{0}B_2\left(\frac{3}{2}\right) + a_{1}B_2\left(\frac{3}{2} - 1\right) + $$$$ + a_{2}B_2\left(\frac{3}{2} - 2\right) + a_{-1}B_2\left(\frac{3}{2} - 3\right) + a_{0}B_2\left(\frac{3}{2} - 4\right) + a_{1}B_2\left(\frac{3}{2} - 5\right)=$$$$ a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot \frac{1}{2} + a_{2} \cdot \frac{1}{2} + a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 = \frac{a_1 + a_2}{2}$$ $$y_2 = s\left(\frac{5}{2}\right) = a_{-1}B_2\left(\frac{5}{2} + 1\right) + a_{0}B_2\left(\frac{5}{2}\right) + a_{1}B_2\left(\frac{5}{2} - 1\right) + $$$$ + a_{2}B_2\left(\frac{5}{2} - 2\right) + a_{-1}B_2\left(\frac{5}{2} - 3\right) + a_{0}B_2\left(\frac{5}{2} - 4\right) + a_{1}B_2\left(\frac{5}{2} - 5\right)=$$$$ a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 + a_{2} \cdot \frac{1}{2} + a_{-1} \cdot \frac{1}{2} + a_{0} \cdot 0 + a_{1} \cdot 0 = \frac{a_2 + a_{-1}}{2}$$ $$y_1 = s\left(\frac{7}{2}\right) = a_{-1}B_2\left(\frac{7}{2} + 1\right) + a_{0}B_2\left(\frac{7}{2}\right) + a_{1}B_2\left(\frac{7}{2} - 1\right) + $$$$ + a_{2}B_2\left(\frac{7}{2} - 2\right) + a_{-1}B_2\left(\frac{7}{2} - 3\right) + a_{0}B_2\left(\frac{7}{2} - 4\right) + a_{1}B_2\left(\frac{7}{2} - 5\right)=$$$$ a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 + a_{2} \cdot 0 + a_{-1} \cdot \frac{1}{2} + a_{0} \cdot \frac{1}{2} + a_{1} \cdot 0 = \frac{a_{-1} + a_0}{2}$$ The linear system in matrix form is: \[\frac{1}{2} \cdot \begin{bmatrix} 0&1&1&0\\ 0&0&1&1\\ 1&0&0&1\\ 1&1&0&0\\ \end{bmatrix} \begin{bmatrix} a_{-1}\\a_0\\a_1\\a_2\\ \end{bmatrix} = \begin{bmatrix} y_0\\y_1\\y_2\\y_{3}\\ \end{bmatrix}\] The determinant of that matrix is 0 so the matrix is singular. \subsection*{Point b)} The node coordinates to which fix the quadratic spline are $(0, y_0), (1, y_1),(2, y_2),(3, y_3)$. Then, we can start formulating the equations for the linear system: $$y_0 = s(0) = a_{-1}B_2\left(1\right) + a_{0}B_2\left(0\right) + a_{1}B_2\left(- 1\right) + $$$$ + a_{2}B_2\left(- 2\right) + a_{-1}B_2\left(- 3\right) + a_{0}B_2\left(- 4\right) + a_{1}B_2\left(- 5\right)=$$$$ a_{-1} \cdot \frac{1}{8} + a_{0} \cdot \frac{3}{4} + a_{1} \cdot \frac{1}{8} + a_{2} \cdot 0 + a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 = \frac{1}{8} a_{-1} + \frac{3}{4} a_{0} + \frac{1}{8} a_{1}$$ $$y_1 = s\left(1\right) = a_{-1}B_2\left(1 + 1\right) + a_{0}B_2\left(1\right) + a_{1}B_2\left(1 - 1\right) + $$$$ + a_{2}B_2\left(1 - 2\right) + a_{-1}B_2\left(1 - 3\right) + a_{0}B_2\left(1 - 4\right) + a_{1}B_2\left(1 - 5\right)=$$$$ a_{-1} \cdot 0 + a_{0} \cdot \left(\frac{1}{8}\right) + a_{1} \cdot \frac{3}{4} + a_{2} \cdot \left(\frac{1}{8}\right) + a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 = \frac{1}{8} a_{0} + \frac{3}{4} a_{1} + \frac{1}{8} a_{2}$$ $$y_2 = s\left(2\right) = a_{-1}B_2\left(2 + 1\right) + a_{0}B_2\left(2\right) + a_{1}B_2\left(2 - 1\right) + $$$$ + a_{2}B_2\left(2 - 2\right) + a_{-1}B_2\left(2 - 3\right) + a_{0}B_2\left(2 - 4\right) + a_{1}B_2\left(2 - 5\right)=$$$$ a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot \left(\frac{1}{8}\right) + a_{2} \cdot \frac{3}{4} + a_{-1} \cdot \left(\frac{1}{8}\right) + a_{0} \cdot 0 + a_{1} \cdot 0 = \frac{1}{8} a_{1} + \frac{3}{4} a_{2} + \frac{1}{8} a_{-1}$$ $$y_3 = s\left(3\right) = a_{-1}B_2\left(3 + 1\right) + a_{0}B_2\left(3\right) + a_{1}B_2\left(3 - 1\right) + $$$$ + a_{2}B_2\left(3 - 2\right) + a_{-1}B_2\left(3 - 3\right) + a_{0}B_2\left(3 - 4\right) + a_{1}B_2\left(3 - 5\right)=$$$$ a_{-1} \cdot 0 + a_{0} \cdot 0 + a_{1} \cdot 0 + a_{2} \cdot \frac{1}{8} + a_{-1} \cdot \frac{3}{4} + a_{0} \cdot \frac{1}{8} + a_{1} \cdot 0 = \frac{1}{8} a_{2} + \frac{3}{4} a_{-1} + \frac{1}{8} a_{0}$$ The linear system in matrix form is: \[\frac{1}{8} \cdot \begin{bmatrix} 6&1&0&1\\ 1&6&1&0\\ 0&1&6&1\\ 1&0&1&6\\ \end{bmatrix} \begin{bmatrix} a_0\\a_1\\a_2\\a_{-1}\\ \end{bmatrix} = \begin{bmatrix} y_0\\y_1\\y_2\\y_{3}\\ \end{bmatrix}\] \section*{Question 5} $$1 = y_0 = s(x_0) = 0 = a_{-1}B_3(1) +a_0B_3(0) +a_1B_3(-1) +a_2B_3(-2) +a_3B_3(-3) = \frac{1}{6}a_{-1} + \frac{2}{3}a_0 + \frac{1}{6}a_1$$ $$5 = y_1 = s(x_1) = 1 = a_{-1}B_3(2) +a_0B_3(1) +a_1B_3(0) +a_2B_3(-1) +a_3B_3(-2) = \frac{1}{6}a_{0} + \frac{2}{3}a_1 + \frac{1}{6}a_2$$ $$1 = y_2 = s(x_2) = 2 = a_{-1}B_3(3) +a_0B_3(2) +a_1B_3(1) +a_2B_3(0) +a_3B_3(-1) = \frac{1}{6}a_{1} + \frac{2}{3}a_2 + \frac{1}{6}a_3$$ $$s''(0) = a_{-1}B''_3(1) +a_0B''_3(0) +a_1B''_3(-1) +a_2B''_3(-2) +a_3B''_3(-3) = a_{-1} - 2 a_0 + a_{1}$$ $$s''(2) = a_{-1}B''_3(3) +a_0B''_3(2) +a_1B''_3(1) +a_2B''_3(-0) +a_3B''_3(-1) = a_{1} - 2 a_2 + a_{3}$$ \[\frac{1}{6} \cdot \begin{bmatrix} 1&-2&1&0&0\\ 1&4&1&0&0\\ 0&1&4&1&0\\ 0&0&1&4&1\\ 0&0&1&-2&1\\ \end{bmatrix} \begin{bmatrix} a_{-1}\\a_0\\a_1\\a_2\\a_3\\ \end{bmatrix} = \begin{bmatrix} 0\\y_0\\y_1\\y_2\\0\\ \end{bmatrix}\] We then use Gaussian \textit{ellimination} to solve the system. \[ \begin{array}{@{}ccccc|c@{}} 1&-2&1&0&0&0\\ 1&4&1&0&0&6\\ 0&1&4&1&0&30\\ 0&0&1&4&1&6\\ 0&0&1&-2&1&0\\ \end{array} \qquad \begin{array}{@{}ccccc|c@{}} 1&-2&1&0&0&0\\ 0&6&0&0&0&6\\ 0&1&4&1&0&30\\ 0&0&1&4&1&6\\ 0&0&1&-2&1&0\\ \end{array} \qquad \begin{array}{@{}ccccc|c@{}} 1&-2&1&0&0&0\\ 0&1&4&1&0&30\\ 0&6&0&0&0&6\\ 0&0&1&4&1&6\\ 0&0&1&-2&1&0\\ \end{array} \] \[ \begin{array}{@{}ccccc|c@{}} 1&0&9&2&0&60\\ 0&1&4&1&0&30\\ 0&0&-24&-6&0&-174\\ 0&0&1&4&1&6\\ 0&0&1&-2&1&0\\ \end{array} \qquad \begin{array}{@{}ccccc|c@{}} 1&0&9&2&0&60\\ 0&1&4&1&0&30\\ 0&0&1&4&1&6\\ 0&0&-24&-6&0&-174\\ 0&0&1&-2&1&0\\ \end{array} \qquad \begin{array}{@{}ccccc|c@{}} 1&0&0&-34&-9&6\\ 0&1&0&-15&-4&6\\ 0&0&1&4&1&6\\ 0&0&0&90&24&-30\\ 0&0&0&6&0&-6\\ \end{array} \] \[ \begin{array}{@{}ccccc|c@{}} 1&0&0&-34&-9&6\\ 0&1&0&-15&-4&6\\ 0&0&1&4&1&6\\ 0&0&0&1&4/15&-1/3\\ 0&0&0&6&0&-6\\ \end{array} \qquad \begin{array}{@{}ccccc|c@{}} 1 & 0 & 0 & 0 & 1/15 & -16/3 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1/15 & 22/3 \\ 0 & 0 & 0 & 1 & 4/15 & -1/3 \\ 0 & 0 & 0 & 0 & 8/5 & -8 \\ \end{array} \qquad \begin{array}{@{}ccccc|c@{}} 1 & 0 & 0 & 0 & 0 & -5 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 7 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -5 \\ \end{array} \] Therefore, the coefficients are $a_{-1} = a_3 = -5$, $a_0 = a_2 = 1$, and $a_1 = 7$. \end{document}