Lecture notes 6 - Introduction to Computational Science

Micheal Multerer
Copied by: Claudio Maggioni

April 19, 2020

2.5: Partial pivoting

Obviously, Algorithm 2.8 fails if one of the pivots becomes zero. In this case, we need to choose a different pivot element.

Simple approach: Column pivoting choose $\left|a_{k, i}^{(i)}\right|=\max _{i \leq l \leq n}\left|a_{l, i}^{(i)}\right|$ In order to move the pivot element and the corresponding row we switch row k and row i by a primitive matrix:

$$
\bar{P}_{i}:=\left[\begin{array}{cccccccc}
1_{1} & & & & & & & \\
& \ddots & & & & & & \\
& & 1_{i-1} & & & & & \\
& & & 0 & \ldots & 1_{k} & & \\
& & & \vdots & 1_{i+1} & & & \\
& & & 1_{i} & & 0 & & \\
& & & & & & \ddots & \\
& & & & & & & 1_{n}
\end{array}\right]
$$

The following rules apply:

1. Multiplication by P_{i} from the left \Rightarrow interchange rows i and k
2. Multiplication by P_{i} from the right \Rightarrow interchange columns i and k
3. $\left(\bar{P}_{i}\right)^{2}=\bar{P}_{i} \cdot \bar{P}_{i}=\bar{I}$

Then performing an LU decompisition with pivoting can be written in matrix notation as:

$$
A_{i+1}=L_{i} \cdot \bar{P}_{i} \cdot A_{i}
$$

Note: For $j<i$, it holds $\bar{P}_{i} \bar{L}_{j}=\widetilde{L}_{j} \bar{P}_{i}$ where \widetilde{L} is the same matrix as \bar{L}_{j} except that $\left[\widetilde{l}_{j}\right]_{i}$ and $\left[\widetilde{L}_{j}\right]_{k}$ are interchanged:

$$
\bar{L}_{i}:=\left[\begin{array}{ccccccc}
1 & & & & & & \\
& \ddots & & & & & \\
& & 1 & & & & \\
& & & \hat{l}_{2}^{(j)} & & & \\
& & & \hat{l}_{i}^{(j)} & 1 & & \\
& & & \hat{l}_{k}^{(j)} & & \ddots & \\
& & & \hat{l}_{n}^{(j)} & & & 1
\end{array}\right] \quad \widetilde{L}_{i}:=\left[\begin{array}{ccccccc}
1 & & & & & & \\
& \ddots & & & & & \\
& & 1 & & & & \\
& & & \hat{l}_{2}^{(j)} & & & \\
& & & \hat{l}_{k}^{(j)} & 1 & & \\
& & & \hat{l}_{i}^{(j)} & & \ddots & \\
& & & \hat{l}_{n}^{(j)} & & & 1
\end{array}\right]
$$

Resolving (*) then yields:

$$
\bar{A}_{i+1}=\bar{L}_{i} \bar{P}_{i} \bar{L}_{i-1} \bar{P}_{i-1} \ldots \bar{L}_{1} \bar{P}_{1} A
$$

or

$$
\bar{L}_{n-1} \bar{P}_{n-1} \bar{L}_{n-2} \bar{P}_{n-2} \ldots \bar{L}_{1} \bar{P}_{1} \bar{A}=\bar{U}
$$

Now we can exploit $P_{2} \bar{L}_{1} \bar{P}_{1}=\widetilde{L}_{1} \bar{P}_{2} \bar{P}_{1}$ and so on. This yields:

$$
\bar{P} \bar{A}=\bar{L} \bar{U}
$$

with

$$
\bar{P}=\bar{P}_{n-1} \bar{P}_{n-2} \ldots \bar{P}_{1}
$$

and

$$
\widetilde{L}=\widetilde{L}_{1}^{-1} \ldots \widetilde{L}_{n-1}^{-1}
$$

and

$$
\begin{gathered}
\widetilde{L}_{n-1}=\bar{L}_{n-1} \\
\widetilde{L}_{n-2}=\bar{P}_{n-1} \bar{L}_{n-2} \bar{P}_{n-1} \\
\vdots \\
\widetilde{L}_{1}=\bar{P}_{n-1} \bar{P}_{n-2} \ldots \bar{P}_{2} \bar{L}_{1} \bar{P}_{2} \ldots \bar{P}_{n-2} \bar{P}_{n-1}
\end{gathered}
$$

Note: If $\bar{A} \in R^{n \times n}$ is non-singular, the pivoted LU decomposition $\bar{P} \bar{A}=\bar{L} \bar{U}$ always exists.
We can easily add column priority in Algorithm 2.8:

Algorithm 2.9 (Outer product LU decomposition with column pivoting)
input: matrix $\bar{A}=\left[a_{i, j}\right]_{i, j=1}^{n} \in R^{n \times n}$
output: pivoted LU decomposition $\bar{L} \bar{U}=\bar{P} \bar{A}$

1. Set $\bar{A}_{1}=\bar{A}, \bar{p}=[1,2, \ldots, n]$
2. For $i=1,2, \ldots, n$

- compute: $\mathrm{k}=\arg \max _{1 \leq j \leq n}\left|a_{p_{j}, i}^{(i)}\right| \%$ find pivot
- swap: $p_{i} \longleftrightarrow \rightarrow p_{k}$
- $\bar{l}_{i}:=\bar{a}_{:, i}^{(i)} / a_{p_{i}, i}^{(i)}$
- $\bar{u}_{i}:=a_{p_{i},}^{(i)}$
- compute: $\bar{A}_{i+1}=\bar{A}_{i}-\bar{l}_{i} \cdot \bar{u}_{i}$

3. set $\bar{P}:=\left[\bar{e}_{p_{1}}, \bar{e}_{p_{2}}, \ldots, \bar{e}_{p_{n}}\right]^{T} \% \bar{e}_{i}$ is i-th unit vector
4. set $\bar{L}=\bar{P}\left[\bar{l}_{1}, \bar{l}_{2}, \cdots, \bar{l}_{n}\right]$

Example 2.10 (omitted)

2.6: Cholesky decomposition

If \bar{A} is symmetric and positive definite, i.e. all eigenvalues of \bar{A} are bigger than zero or equivalently $\bar{x}^{T} \bar{A} \bar{x}>0$ for all $\bar{x} \neq 0$, we can compute a symmetric decomposition of \bar{A}.

Note: if \bar{A} is symmetric and positive definite, then the Schur complement $\bar{S}:=\bar{A}_{2: n, 2: n}-$ $\left(\bar{a}_{2: n}, 1 / a_{1,1}\right) \bar{a}_{2: n, 1}^{T}$, is symmetric and positive definite as well. In particular, it holds $s_{i, i}>0$ and $a_{i, i}>0$!

Definition 2.11 A decomposition $\bar{A}=\bar{L} \bar{L}^{T}$ with a lower triangular matrix \bar{L} with positive diagonal elements is called Cholesky decomposition of \bar{A}.

Note: A Cholesky decomposition exists, if \bar{A} is symmetric and positive definite.

Algorithm 2.12 (outer product of Cholesky decomposition) input: matrix \bar{A} symmetric and positive definite output: Cholesky decomposition $\bar{A}=\bar{L} \bar{L}^{T}=\left[\bar{l}_{1}, \bar{l}_{2}, \ldots, \bar{l}_{n}\right]\left[\bar{l}_{1}, \bar{l}_{2}, \ldots, \bar{l}_{n}\right]^{T}$

1. set: $\bar{A}_{1}:=\bar{A}$
2. for $i=1,2, \ldots, n$

- set: $\bar{l}_{i}:=a_{:, i}^{(i)} / \sqrt{a_{i, i}^{(i)}}$
- set: $\bar{A}_{i+1}:=\bar{A}_{i}-\bar{l}_{i} \bar{T}_{i}^{T}$

3. set: $\bar{L}=\left[\bar{l}_{1}, \bar{l}_{2}, \ldots, \bar{l}_{n}\right]$

The computational cost is $\frac{1}{6} n^{3}+O\left(n^{2}\right)$ and thus only half the cost of LU decomposition.
Example 2.13 (omitted)

