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2.5: Partial pivoting

Obviously, Algorithm 2.8 fails if one of the pivots becomes zero. In this case, we need to choose
a different pivot element.

Simple approach: Column pivoting choose |a(i)k,i| = maxi≤l≤n |a(i)l,i | In order to move the pivot
element and the corresponding row we switch row k and row i by a primitive matrix :
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The following rules apply:

1. Multiplication by Pi from the left ⇒ interchange rows i and k

2. Multiplication by Pi from the right ⇒ interchange columns i and k

3. (P̄i)
2 = P̄i · P̄i = Ī

Then performing an LU decompisition with pivoting can be written in matrix notation as:

Ai+1 = Li · P̄i · Ai

Note: For j < i, it holds P̄iL̄j = L̃jP̄i where L̃ is the same matrix as L̄j except that [l̃j]i and

[L̃j]k are interchanged:
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Resolving (*) then yields:

Āi+1 = L̄iP̄iL̄i−1P̄i−1 . . . L̄1P̄1A

or
L̄n−1P̄n−1L̄n−2P̄n−2 . . . L̄1P̄1Ā = Ū

Now we can exploit P2L̄1P̄1 = L̃1P̄2P̄1 and so on. This yields:

P̄ Ā = L̄Ū

with
P̄ = P̄n−1P̄n−2 . . . P̄1

and
L̃ = L̃−1

1 . . . L̃−1
n−1

and
L̃n−1 = L̄n−1

L̃n−2 = P̄n−1L̄n−2P̄n−1

...

L̃1 = P̄n−1P̄n−2 . . . P̄2L̄1P̄2 . . . P̄n−2P̄n−1

Note: If Ā ∈ Rn×n is non-singular, the pivoted LU decomposition P̄ Ā = L̄Ū always exists.

We can easily add column priority in Algorithm 2.8:

Algorithm 2.9 (Outer product LU decomposition with column pivoting)
input: matrix Ā = [ai,j]

n
i,j=1 ∈ Rn×n

output: pivoted LU decomposition L̄Ū = P̄ Ā

1. Set Ā1 = Ā, p̄ = [1, 2, . . . , n]

2. For i = 1, 2, . . . , n

• compute: k = arg max1≤j≤n |a
(i)
pj ,i
| % find pivot

• swap: pi ←→ pk

• l̄i := ā
(i)
:,i /a

(i)
pi,i

• ūi := a
(i)
pi,:

• compute: Āi+1 = Āi − l̄i · ūi

3. set P̄ := [ēp1 , ēp2 , . . . , ēpn ]T % ēi is i-th unit vector

4. set L̄ = P̄ [l̄1, l̄2, · · · , l̄n]

Example 2.10 (omitted)

2.6: Cholesky decomposition

If Ā is symmetric and positive definite, i.e. all eigenvalues of Ā are bigger than zero or equiva-
lently x̄T Āx̄ > 0 for all x̄ 6= 0, we can compute a symmetric decomposition of Ā.
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Note: if Ā is symmetric and positive definite, then the Schur complement S̄ := Ā2:n,2:n −
(ā2:n, 1/a1,1)ā

T
2:n,1, is symmetric and positive definite as well. In particular, it holds si,i > 0 and

ai,i > 0 !

Definition 2.11 A decomposition Ā = L̄L̄T with a lower triangular matrix L̄ with positive
diagonal elements is called Cholesky decomposition of Ā.

Note: A Cholesky decomposition exists, if Ā is symmetric and positive definite.

Algorithm 2.12 (outer product of Cholesky decomposition)
input: matrix Ā symmetric and positive definite
output: Cholesky decomposition Ā = L̄L̄T = [l̄1, l̄2, . . . , l̄n][l̄1, l̄2, . . . , l̄n]T

1. set: Ā1 := Ā

2. for i = 1, 2, . . . , n

• set: l̄i := a
(i)
:,i /

√
a
(i)
i,i

• set: Āi+1 := Āi − l̄il̄
T
i

3. set: L̄ = [l̄1, l̄2, . . . , l̄n]

The computational cost is 1
6
n3 + O(n2) and thus only half the cost of LU decomposition.

Example 2.13 (omitted)
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