Lecture notes 6 – Introduction to Computational Science

Micheal Multerer Copied by: Claudio Maggioni

April 19, 2020

2.5: Partial pivoting

Obviously, Algorithm 2.8 fails if one of the pivots becomes zero. In this case, we need to choose a different pivot element.

Simple approach: Column pivoting choose $|a_{k,i}^{(i)}| = \max_{i \le l \le n} |a_{l,i}^{(i)}|$ In order to move the pivot element and the corresponding row we switch row k and row i by a *primitive matrix*:

$$\bar{P}_i := \begin{bmatrix} 1_1 & & & & \\ & \ddots & & & \\ & & 1_{i-1} & & & \\ & & 0 & \dots & 1_k & \\ & & & \vdots & 1_{i+1} & & \\ & & & & 1_i & & 0 & \\ & & & & & & \ddots & \\ & & & & & & & 1_n \end{bmatrix}$$

The following rules apply:

- 1. Multiplication by P_i from the left \Rightarrow interchange rows i and k
- 2. Multiplication by P_i from the right \Rightarrow interchange columns i and k
- 3. $(\bar{P}_i)^2 = \bar{P}_i \cdot \bar{P}_i = \bar{I}$

Then performing an LU decomposition with pivoting can be written in matrix notation as:

$$A_{i+1} = L_i \cdot P_i \cdot A_i$$

Note: For j < i, it holds $\overline{P}_i \overline{L}_j = \widetilde{L}_j \overline{P}_i$ where \widetilde{L} is the same matrix as \overline{L}_j except that $[\widetilde{l}_j]_i$ and $[\widetilde{L}_j]_k$ are interchanged:

$$\bar{L}_{i} := \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & \hat{l}_{2}^{(j)} & & \\ & & \hat{l}_{i}^{(j)} & & 1 & \\ & & & \hat{l}_{k}^{(j)} & & \ddots & \\ & & & & \hat{l}_{n}^{(j)} & & & 1 \end{bmatrix} \qquad \tilde{L}_{i} := \begin{bmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & & \hat{l}_{2}^{(j)} & & \\ & & & & \hat{l}_{2}^{(j)} & & \\ & & & & \hat{l}_{2}^{(j)} & & \\ & & & & & \hat{l}_{n}^{(j)} & & & 1 \end{bmatrix}$$

Resolving (*) then yields:

$$\bar{A}_{i+1} = \bar{L}_i \bar{P}_i \bar{L}_{i-1} \bar{P}_{i-1} \dots \bar{L}_1 \bar{P}_1 A$$

or

$$\bar{L}_{n-1}\bar{P}_{n-1}\bar{L}_{n-2}\bar{P}_{n-2}\dots\bar{L}_1\bar{P}_1\bar{A}=\bar{U}$$

Now we can exploit $P_2 \overline{L}_1 \overline{P}_1 = \widetilde{L}_1 \overline{P}_2 \overline{P}_1$ and so on. This yields:

 $\bar{P}\bar{A} = \bar{L}\bar{U}$

with

$$\bar{P} = \bar{P}_{n-1}\bar{P}_{n-2}\dots\bar{P}_1$$

and

$$\widetilde{L} = \widetilde{L}_1^{-1} \dots \widetilde{L}_{n-1}^{-1}$$

and

$$L_{n-1} = \bar{L}_{n-1}$$
$$\tilde{L}_{n-2} = \bar{P}_{n-1}\bar{L}_{n-2}\bar{P}_{n-1}$$
$$\vdots$$
$$\tilde{L}_{1} = \bar{P}_{n-1}\bar{P}_{n-2}\dots\bar{P}_{2}\bar{L}_{1}\bar{P}_{2}\dots\bar{P}_{n-2}\bar{P}_{n-1}$$

Note: If $\bar{A} \in \mathbb{R}^{n \times n}$ is non-singular, the pivoted LU decomposition $\bar{P}\bar{A} = \bar{L}\bar{U}$ always exists.

We can easily add column priority in Algorithm 2.8:

Algorithm 2.9 (Outer product LU decomposition with column pivoting) input: matrix $\bar{A} = [a_{i,j}]_{i,j=1}^n \in \mathbb{R}^{n \times n}$ output: pivoted LU decomposition $\bar{L}\bar{U} = \bar{P}\bar{A}$

- 1. Set $\bar{A}_1 = \bar{A}, \bar{p} = [1, 2, \dots, n]$
- 2. For i = 1, 2, ..., n
 - compute: $\mathbf{k} = \arg \max_{1 \le j \le n} |a_{p_j,i}^{(i)}| \%$ find pivot
 - swap: $p_i \leftrightarrow p_k$
 - $\bar{l}_i := \bar{a}_{:,i}^{(i)} / a_{p_i,i}^{(i)}$
 - $\bar{u}_i := a_{p_i,:}^{(i)}$
 - compute: $\bar{A}_{i+1} = \bar{A}_i \bar{l}_i \cdot \bar{u}_i$
- 3. set $\overline{P} := [\overline{e}_{p_1}, \overline{e}_{p_2}, \dots, \overline{e}_{p_n}]^T \% \overline{e}_i$ is i-th unit vector

4. set
$$\overline{L} = \overline{P}[\overline{l}_1, \overline{l}_2, \cdots, \overline{l}_n]$$

Example 2.10 (omitted)

2.6: Cholesky decomposition

If \bar{A} is symmetric and positive definite, i.e. all eigenvalues of \bar{A} are bigger than zero or equivalently $\bar{x}^T \bar{A} \bar{x} > 0$ for all $\bar{x} \neq 0$, we can compute a symmetric decomposition of \bar{A} . Note: if \bar{A} is symmetric and positive definite, then the *Schur complement* $\bar{S} := \bar{A}_{2:n,2:n} - (\bar{a}_{2:n}, 1/a_{1,1})\bar{a}_{2:n,1}^T$, is symmetric and positive definite as well. In particular, it holds $s_{i,i} > 0$ and $a_{i,i} > 0$!

Definition 2.11 A decomposition $\bar{A} = \bar{L}\bar{L}^T$ with a lower triangular matrix \bar{L} with positive diagonal elements is called *Cholesky decomposition of* \bar{A} .

Note: A Cholesky decomposition exists, if \overline{A} is symmetric and positive definite.

Algorithm 2.12 (outer product of Cholesky decomposition) input: matrix \bar{A} symmetric and positive definite output: Cholesky decomposition $\bar{A} = \bar{L}\bar{L}^T = [\bar{l}_1, \bar{l}_2, \dots, \bar{l}_n][\bar{l}_1, \bar{l}_2, \dots, \bar{l}_n]^T$

- 1. set: $\bar{A}_1 := \bar{A}$
- 2. for $i = 1, 2, \ldots, n$

• set:
$$\bar{l}_i := a_{:,i}^{(i)} / \sqrt{a_{i,i}^{(i)}}$$

• set:
$$\bar{A}_{i+1} := \bar{A}_i - \bar{l}_i \bar{l}_i^T$$

3. set: $\bar{L} = [\bar{l}_1, \bar{l}_2, \dots, \bar{l}_n]$

The computational cost is $\frac{1}{6}n^3 + O(n^2)$ and thus only half the cost of LU decomposition.

Example 2.13 (omitted)