Howework 5 - Introduction to Computational Science

Claudio Maggioni

May 27, 2020

Question 1

Given the definition of degree of exactness being the highest polynomial degree n at which a quadrature, for every polynomial of degree n, produces exactly the same polynomial, these are the proofs.

Midpoint rule

All polynomials of degree 1 can be expressed as:

$$
p_{1}(x)=a_{1} \cdot x+a_{0}
$$

Therefore their integral is:

$$
\int_{0}^{1} a_{1} \cdot x+a_{0} d x=\frac{a_{1}}{2}+a_{0}
$$

The midpoint rule for $p_{1}(x)$ is

$$
f\left(\frac{1}{2}\right) \cdot 1=\frac{a_{1}}{2}+a_{0}=\int_{0}^{1} a_{1} \cdot x+a_{0} d x
$$

Therefore the midpoint rule has a degree of exactness of at least 1 .
It is easy to show that the degree of exactness is not higher than 1 by considering the degree 2 polynomial x^{2}, which has an integral in $[0,1]$ of $\frac{1}{3}$ but a midpoint rule quadrature of $\frac{1}{4}$.

Trapezoidal rule

The proof is similar to the one for the midpoint rule, but with this quadrature for degree 1 polynomials:

$$
\frac{f(0)}{2}+\frac{f(1)}{2}=\frac{a_{0}+a_{1}+a_{0}}{2}=\frac{a_{1}}{2}+a_{0}
$$

Which is again equal to the general integral for these polynomials.
Again x^{2} is a degree 2 polynomial with integral $\frac{1}{3}$ but a midpoint quadrature of $\frac{0+1}{2}=\frac{1}{2}$, thus bounding the degree of exactness to 1 .

Simpson rule

The proof is again similar, but for degree 3 polynomials which can all be written as:

$$
p_{3}(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

The integral is:

$$
\int_{0}^{1} p_{3}(x) d x=\frac{a_{3}}{4}+\frac{a_{2}}{3}+\frac{a_{1}}{2}+a_{0}
$$

The Simpson rule gives:

$$
\begin{gathered}
\frac{1}{6} \cdot f(0)+\frac{4}{6} \cdot f\left(\frac{1}{2}\right)+\frac{1}{6} \cdot f(1)=\frac{1}{6} a_{0}+\frac{4}{6}\left(\frac{a_{3}}{8}+\frac{a_{2}}{4}+\frac{a_{1}}{2}+a_{0}\right)+ \\
\frac{1}{6}\left(a_{3}+a_{2}+a_{1}+a_{0}\right)=\frac{a_{3}}{4}+\frac{a_{2}}{3}+\frac{a_{1}}{2}+a_{0}=\int_{0}^{1} p_{3}(x) d x
\end{gathered}
$$

Which tells us that the degree of exactness is at least 1.
We can bound the degree of exactness to 3 with the 4th degree polynomial x^{4} which has integral in $[0,1]$ of $\frac{1}{5}$ but has a quadrature of $\frac{1}{6} \cdot 0+\frac{2}{3} \cdot \frac{1}{16}+\frac{1}{6} \cdot 1=\frac{5}{24}$.

Question 2

The algebraic solution is:

$$
\int_{0}^{1} 1-4(x-0.5)^{2} d x=1-4 \cdot \int_{0}^{1} x^{2}-x+\frac{1}{4}=1-4\left(\frac{4-6+3}{12}\right)=1-\frac{1}{3}=\frac{2}{3}
$$

The solution using quadrature is:

$$
\begin{gathered}
Q=\frac{1}{2}(f(0)+f(1))=\frac{1}{2}(0+0)=0 \quad(x, h)=\left(\frac{1}{2}, \frac{1}{2}\right) \quad \epsilon=\frac{1}{10} \\
E\left(\frac{1}{2}, \frac{1}{2}\right)=f\left(\frac{1}{2}\right)-\frac{1}{2}(f(0)+f(1))=1>\frac{1}{10} \quad Q=0+\frac{1}{2} \cdot 1=\frac{1}{2} \\
E\left(\frac{1}{4}, \frac{1}{4}\right)=f\left(\frac{1}{4}\right)-\frac{1}{2}\left(f(0)+f\left(\frac{1}{2}\right)\right)=\frac{3}{4}-\frac{1}{2}=\frac{1}{4}>\frac{1}{10} \quad Q=\frac{1}{2}+\frac{1}{4} \cdot \frac{1}{4}=\frac{9}{16} \\
E\left(\frac{3}{4}, \frac{1}{4}\right)=f\left(\frac{3}{4}\right)-\frac{1}{2}\left(f\left(\frac{1}{2}\right)+f(1)\right)=\frac{1}{4}>\frac{1}{10} \quad Q=\frac{9}{16}+\frac{1}{4} \cdot \frac{1}{4}=\frac{10}{16} \\
E\left(\frac{1}{8}, \frac{1}{8}\right)=f\left(\frac{1}{8}\right)-\frac{1}{2}\left(f(0)+f\left(\frac{1}{4}\right)\right)=\frac{7}{16}-\frac{1}{2} \cdot \frac{3}{4}=\frac{1}{16}<\frac{1}{10} \\
E\left(\frac{3}{8}, \frac{1}{8}\right)=f\left(\frac{3}{8}\right)-\frac{1}{2}\left(f\left(\frac{1}{4}\right)+f\left(\frac{1}{2}\right)\right)=\frac{15}{16}-\frac{1}{2} \cdot \frac{7}{4}=\frac{1}{16}<\frac{1}{10} \\
E\left(\frac{5}{8}, \frac{1}{8}\right)=f\left(\frac{5}{8}\right)-\frac{1}{2}\left(f\left(\frac{1}{2}\right)+f\left(\frac{3}{4}\right)\right)=\frac{15}{16}-\frac{1}{2} \cdot \frac{7}{4}=\frac{1}{16}<\frac{1}{10} \\
E\left(\frac{7}{8}, \frac{1}{8}\right)=f\left(\frac{7}{8}\right)-\frac{1}{2}\left(f\left(\frac{3}{4}\right)+f(1)\right)=\frac{7}{16}-\frac{1}{2} \cdot \frac{3}{4}=\frac{1}{16}<\frac{1}{10}
\end{gathered}
$$

Thus the solution using quadrature is $\frac{5}{8}$.

Question 4

$$
\begin{aligned}
& {\left[\begin{array}{lll}
x_{0}^{2} & x_{0} & 1 \\
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] } \\
& {\left[\begin{array}{cccc}
x_{0}^{2} & x_{1}^{2} & x_{2}^{2} & x_{3}^{2} \\
x_{0} & x_{1} & x_{2} & x_{3} \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
x_{0}^{2} & x_{0} & 1 \\
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{cccc}
x_{0}^{2} & x_{1}^{2} & x_{2}^{2} & x_{3}^{2} \\
x_{0} & x_{1} & x_{2} & x_{3} \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] } \\
& {\left[\begin{array}{lll}
18 & 8 & 6 \\
8 & 6 & 2 \\
6 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
2
\end{array}\right] }
\end{aligned}
$$

We now use Gaussian ellimination to solve the system:

$$
\begin{array}{ccc|cccc|cccc|cccc|c}
18 & 8 & 6 & 2 & 1 & \frac{4}{9} & \frac{1}{3} & \frac{1}{9} & 1 & \frac{4}{9} & \frac{1}{3} & \frac{1}{9} & 1 & \frac{4}{9} & \frac{1}{3} & \frac{1}{9} \\
8 & 6 & 2 & 0 & 8 & 6 & 2 & 0 & 0 & \frac{22}{9} & \frac{-2}{3} & \frac{-8}{9} & 0 & 1 & \frac{-3}{11} & \frac{-4}{11} \\
6 & 2 & 4 & 2 & 6 & 2 & 4 & 2 & 0 & \frac{-2}{3} & 2 & \frac{4}{3} & 0 & \frac{-2}{3} & 2 & \frac{4}{3} \\
1 & 0 & \frac{5}{11} & \frac{3}{11} & 1 & 0 & \frac{5}{11} & \frac{3}{11} & 1 & 0 & 0 & 0 \\
0 & 1 & \frac{-3}{11} & \frac{-4}{11} & 0 & 1 & \frac{-3}{11} & \frac{-4}{11} & 0 & 1 & 0 & \frac{-1}{5} \\
0 & 0 & \frac{20}{11} & \frac{12}{11} & 0 & 0 & 1 & \frac{3}{5} & 0 & 0 & 1 & \frac{3}{5}
\end{array} \quad\left[\begin{array}{c}
0 \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\frac{1}{5} \\
\frac{3}{5}
\end{array}\right]
$$

