Howework 2 - Introduction to Computational Science

Claudio Maggioni

March 19, 2020

Question 1

The solutions assume that the sign bit 1 is negative and 0 is positive.

Point a

- 13 is equal to 0101000000001011 ;
- 42.125 is equal to 0010100010001101 ;
- 0.8 is equal to 01100110011000011.0 .78 is approximated to 0.7998046875 ;

Point b

1011010111001101 is $(-1) *(0.25+0.125+0.03125+0.0078125+0.00320625+0.001953125) * 2^{5}$, which is equal to -13.4151 .

Point c

$x_{\max }$ is 0111111111111111 , equal to 255.9375 . Since denormalized numbers do not belong to this representation (since the exponent 0000 cannot be used for valid numbers other than 0) $x_{\min }$ is 0000000000000001 , equal to 0.0078125 .

Question 2

Point a

$$
\frac{(x+\Delta x)+(y+\Delta y)-(x+y)}{x+y}=\frac{\Delta x}{x+y}+\frac{\Delta y}{x+y}=\frac{x}{x+y} \frac{\Delta x}{x}+\frac{y}{x+y} \frac{\Delta y}{y}
$$

Point b

$$
\frac{(x+\Delta x)-(y+\Delta y)-(x-y)}{x-y}=\frac{\Delta x}{x-y}-\frac{\Delta y}{x-y}=\frac{x}{x-y} \frac{\Delta x}{x}-\frac{y}{x-y} \frac{\Delta y}{y}
$$

Point c

$$
\frac{((x+\Delta x)(y+\Delta y))-(x y)}{x y}=\frac{y \Delta x+x \Delta y+\Delta x \Delta y}{x y} \approx \frac{y \Delta x+x \Delta y}{x y}=\frac{\Delta x}{y}+\frac{\Delta y}{x}
$$

Point d

$$
\begin{gathered}
\frac{((x+\Delta x) /(y+\Delta y))-(x / y)}{x / y}=\frac{\frac{(x+\Delta x) y}{(y+\Delta y) y}-\frac{(y+\Delta y) x}{(y+\Delta y) y}}{x / y}=\frac{y \Delta x-x \Delta y}{x(y+\Delta y)}=\frac{y \Delta x}{x(y+\Delta y)}-\frac{\Delta y}{y+\Delta y}= \\
=\left(\frac{x(y+\Delta y)}{y \Delta x}\right)^{-1}-\left(\frac{y+\Delta y}{\Delta y}\right)^{-1}=\left(\frac{x}{\Delta x}-\frac{y \Delta x}{x \Delta y}\right)^{-1}-\left(\frac{y}{\Delta y}+1\right)^{-1}= \\
=\left(\frac{x}{\Delta x}\left(1-\frac{\Delta y}{y}\right)\right)^{-1}-\left(\frac{y}{\Delta y}+1\right)^{-1} \approx\left(\frac{x}{\Delta x}\right)^{-1}-\left(\frac{y}{\Delta y}\right)^{-1}=\frac{\Delta x}{x}-\frac{\Delta y}{y}
\end{gathered}
$$

Point e

Division and multiplication may suffer from cancellation.

Exercise 3

Point d

The error at first keeps getting exponentially smaller due to a better approximation of h when computing the derivative (i.e. h is exponentially nearer to 0), but at 10^{-9} this trend almost becomes the opposite due to loss of significant digits when subtracting from $e^{x+h} e^{x}$ and amplifiying this error by effectively multiplying that with exponentially increasing powers of 10 .

