\documentclass[12pt,a4paper]{article} \usepackage[utf8]{inputenc} \usepackage[margin=2cm]{geometry} \usepackage{amstext} \usepackage{array} \title{Howework 2 -- Introduction to Computational Science} \author{Claudio Maggioni} \begin{document} \maketitle \section*{Question 1} The solutions assume that the sign bit $1$ is negative and $0$ is positive. \subsection*{Point a} \begin{itemize} \item 13 is equal to $0 1010 0000 000 1011$; \item 42.125 is equal to $0 0101 0001 000 1101$; \item 0.8 is equal to $0 1 1001 1001 100 0011$. 0.78 is approximated to 0.7998046875; \end{itemize} \subsection*{Point b} $1 0110 1011 100 1101$ is $(-1) * (0.25+0.125+0.03125+0.0078125+0.00320625+0.001953125) *2^5$, which is equal to $-13.4151$. \subsection*{Point c} $x_{max}$ is $0 1111 1111 111 1111$, equal to $255.9375$. Since denormalized numbers do not belong to this representation (since the exponent $0000$ cannot be used for valid numbers other than 0) $x_{min}$ is $0 0000 0000 000 0001$, equal to $0.0078125$. \section*{Question 2} \subsection*{Point a} $$\frac{(x + \Delta x) + (y + \Delta y) - (x + y)}{x + y} = \frac{\Delta x}{x + y} + \frac{\Delta y}{x + y} = \frac{x}{x + y}\frac{\Delta x}{x} + \frac{y}{x + y}\frac{\Delta y}{y}$$ \subsection*{Point b} $$\frac{(x + \Delta x) - (y + \Delta y) - (x - y)}{x - y} = \frac{\Delta x}{x - y} - \frac{\Delta y}{x - y} = \frac{x}{x - y}\frac{\Delta x}{x} - \frac{y}{x - y}\frac{\Delta y}{y}$$ \subsection*{Point c} $$\frac{((x + \Delta x) (y + \Delta y)) - (x y)}{x y} = \frac{y \Delta x + x \Delta y + \Delta x \Delta y}{x y} \approx \frac{y \Delta x + x \Delta y}{x y} = \frac{\Delta x}{y} + \frac{\Delta y}{x}$$ \subsection*{Point d} $$\frac{((x + \Delta x) / (y + \Delta y)) - (x / y)}{x / y} = \frac{\frac{(x + \Delta x) y}{(y + \Delta y) y} - \frac{(y + \Delta y)x}{(y + \Delta y)y}}{x / y} = \frac{y \Delta x - x \Delta y}{x (y + \Delta y)} = \frac{y \Delta x}{x(y + \Delta y)} - \frac{\Delta y}{y + \Delta y} = $$ $$ = \left(\frac{x(y + \Delta y)}{y \Delta x}\right)^{-1} - \left(\frac{y + \Delta y}{\Delta y}\right)^{-1} = \left(\frac{x}{\Delta x} - \frac{y \Delta x}{x \Delta y}\right)^{-1} - \left(\frac{y}{\Delta y} + 1\right)^{-1} = $$ $$ = \left(\frac{x}{\Delta x} \left(1 - \frac{\Delta y}{y}\right)\right)^{-1} - \left(\frac{y}{\Delta y} + 1\right)^{-1} \approx \left(\frac{x}{\Delta x}\right)^{-1} - \left(\frac{y}{\Delta y}\right)^{-1} = \frac{\Delta x}{x} - \frac{\Delta y}{y} $$ \subsection*{Point e} Division and multiplication may suffer from cancellation. \section*{Exercise 3} \subsection*{Point d} The error at first keeps getting exponentially smaller due to a better approximation of $h$ when computing the derivative (i.e. $h$ is exponentially nearer to 0), but at $10^{-9}$ this trend almost becomes the opposite due to loss of significant digits when subtracting from $e^{x+h}$ $e^x$ and amplifiying this error by effectively multiplying that with exponentially increasing powers of 10. \end{document}