Midterm - Introduction to Computational Science

Claudio Maggioni

April 3, 2020

Question 1

Point a)

$$
\begin{gathered}
7.125_{10}=\left(1+2^{-1}+2^{-2}+2^{-5}\right) * 2^{2}{ }_{10}=0|110010000000| 110_{F} \\
0.8_{10}=\left(1+2^{-1}+2^{-4}+2^{-5}+2^{-8}+2^{-9}+2^{-12}\right) * 2^{-1}{ }_{10} \approx 0|100110011001| 011_{F} \\
0.046875_{10}=\left(2^{-2}+2^{-3}\right) * 2^{-3}{ }_{10}=0|001100000000| 000_{F}
\end{gathered}
$$

For the last conversion, we assume that the denormalized mode of this floating point representation implicitly includes an exponent of -3 (this makes the first bit in the mantissa of a denormalized number weigh 2^{-3}). This behaviour is akin to the denormalized implementation of IEEE 754 floating point numbers.

Point b)

$$
\begin{gathered}
1|011010111000| 110_{F}=-\left(1+2^{-2}+2^{-3}+2^{-5}+2^{-7}+2^{-8}+2^{-9}\right) * 2^{2}{ }_{10} \approx-5.6796875 \\
1|101010101010| 010_{F}=-\left(1+2^{-1}+2^{-3}+2^{-5}+2^{-7}+2^{-9}+2^{-11}\right) * 2^{-2}{ }_{10} \approx-0.4166259766
\end{gathered}
$$

Point c)

$$
1|000000000000| 001_{F}=2_{10}^{-3}=0.125_{10}
$$

Point d)

$$
\begin{gathered}
1|111111111111| 111_{F}= \\
=\left(1+2^{-1}+2^{-2}+2^{-3}+2^{-4}+2^{-5}+2^{-6}+2^{-7}+2^{-8}+2^{-9}+2^{-10}+2^{-11}+2^{-12}\right) * 2^{3}{ }_{10}= \\
=15.998046875_{10}
\end{gathered}
$$

Point e)

With 12 independent binary choices (bits to flip), there are 2^{12} different denormalized numbers in this encoding.

Point f)

With 12 independent binary choices (bits to flip) and 3 extra bits for the exponent, there are $2^{15}-1$ different denormalized numbers in this encoding. We subtract 1 in order to be consistent with the assumption in point a), since 0.125_{10} would be representable both as $1|000000000000| 001_{F}$ and as $1|100000000000| 000_{F}$

Question 2

Point a)

$$
\begin{gathered}
\sqrt[3]{1+x}-1=(\sqrt[3]{1+x}-1) \cdot \frac{\sqrt[3]{(1+x)^{2}}+\sqrt[3]{1+x}+1}{\sqrt[3]{(1+x)^{2}}+\sqrt[3]{1+x}+1}=\frac{(1+x)-1}{\sqrt[3]{(1+x)^{2}}+\sqrt[3]{1+x}+1}= \\
\frac{x}{\sqrt[3]{(1+x)^{2}}+\sqrt[3]{1+x}+1}
\end{gathered}
$$

Point b)

$$
\frac{1-\cos (x)}{\sin (x)}=\frac{\sin ^{2}(x) \cos ^{2}(x)-\cos (x)}{\sin (x)} \cdot \frac{\sin (x)}{\cos (x)} \cdot \frac{\cos (x)}{\sin (x)}=\left(\sin ^{2}(x) \cos (x)-1\right) \cdot \frac{\cos (x)}{\sin (x)}
$$

Point c)

$$
\frac{1}{1-\sqrt{x^{2}-1}}=\frac{1+\sqrt{x^{2}-1}}{\left(1-\sqrt{x^{2}-1}\right)\left(1+\sqrt{x^{2}-1}\right)}=\frac{1+\sqrt{x^{2}-1}}{1-\left(x^{2}-1\right)}=-\frac{1+\sqrt{x^{2}-1}}{x^{2}}
$$

Point d)

$$
x^{3} \cdot\left(\frac{x}{x^{2}-1}-\frac{1}{x}\right)=x^{3} \cdot\left(\frac{x^{2}-x^{2}+1}{x^{3}-x}\right)=\frac{x^{2}}{x^{2}-1}
$$

Point e)

$$
\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x^{2}+x}=\frac{1}{x^{2}+x}
$$

Question 3

Point a)

First we point out that:

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \stackrel{k:=-h}{=} \lim _{k \rightarrow 0} \frac{f(x-(-k))-f(x)}{-k}= \\
=\lim _{k \rightarrow 0} \frac{f(x)-f(x+k)}{k}=-\lim _{h \rightarrow 0} \frac{f(x)-f(x-h)}{h}
\end{gathered}
$$

Then, we find an equivalent way to represent $f^{\prime}(x)$:

$$
\begin{gathered}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=2 \cdot \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{2 h}= \\
=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{2 h}+\left(-\lim _{h \rightarrow 0} \frac{f(x)-f(x-h)}{2 h}\right)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x-h)}{2 h}
\end{gathered}
$$

Then we consider the epsilon-delta definition of limits for the last limit:

$$
\begin{gathered}
\forall \epsilon>0 \exists \delta>0 \mid \forall h>0, \text { if } 0<h<\delta \Rightarrow \\
\left|\frac{f(x+h)-f(x-h)}{2 h}-f^{\prime}(x)\right|=\left|f^{\prime}(x)-\frac{f(x+h)-f(x-h)}{2 h}\right|<\epsilon
\end{gathered}
$$

I GIVE UP :(

Question 4

Point a)

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
2 & 4 & 4 & 4 & 4 \\
3 & 7 & 10 & 10 & 10 \\
4 & 10 & 16 & 20 & 20 \\
5 & 13 & 22 & 30 & 35
\end{array}\right], b=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right] \\
& l_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right], u_{1}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1
\end{array}\right], A_{2}\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 2 & 2 & 2 & 2 \\
0 & 4 & 7 & 7 & 7 \\
0 & 6 & 12 & 16 & 16 \\
0 & 8 & 17 & 25 & 30
\end{array}\right] \\
& l_{2}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
3 \\
4
\end{array}\right], u_{2}=\left[\begin{array}{lllll}
0 & 2 & 2 & 2 & 2
\end{array}\right], A_{3}\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 3 & 3 \\
0 & 0 & 6 & 10 & 10 \\
0 & 0 & 9 & 17 & 22
\end{array}\right] \\
& l_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
2 \\
3
\end{array}\right], u_{3}=\left[\begin{array}{lllll}
0 & 0 & 3 & 3 & 3
\end{array}\right], A_{4}\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 4 \\
0 & 0 & 0 & 8 & 13
\end{array}\right] \\
& l_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
2
\end{array}\right], u_{4}=\left[\begin{array}{lllll}
0 & 0 & 0 & 4 & 4
\end{array}\right], A_{5}\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 5
\end{array}\right] \\
& l_{5}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right], u_{5}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 5
\end{array}\right], L=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
3 & 2 & 1 & 0 & 0 \\
4 & 3 & 2 & 1 & 0 \\
5 & 4 & 3 & 2 & 1
\end{array}\right], U=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 2 & 2 & 2 & 2 \\
0 & 0 & 3 & 3 & 3 \\
0 & 0 & 0 & 4 & 4 \\
0 & 0 & 0 & 0 & 5
\end{array}\right]
\end{aligned}
$$

Point b)

$$
\begin{aligned}
& l_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right], e_{1}^{T}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right], L_{1}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 & 0 \\
-3 & 0 & 1 & 0 & 0 \\
-4 & 0 & 0 & 1 & 0 \\
-5 & 0 & 0 & 0 & 1
\end{array}\right] \\
& l_{2}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
3 \\
4
\end{array}\right], e_{2}^{T}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0
\end{array}\right], L_{2}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & -2 & 1 & 0 & 0 \\
0 & -3 & 0 & 1 & 0 \\
0 & -4 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& l_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
2 \\
3
\end{array}\right], e_{3}^{T}=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0
\end{array}\right], L_{3}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 1 & 0 \\
0 & 0 & -3 & 0 & 1
\end{array}\right] \\
& l_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
2
\end{array}\right], e_{4}^{T}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0
\end{array}\right], L_{4}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 1
\end{array}\right]
\end{aligned}
$$

Point c)

$$
\begin{gathered}
L y=b \\
L=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
3 & 2 & 1 & 0 & 0 \\
4 & 3 & 2 & 1 & 0 \\
5 & 4 & 3 & 2 & 1
\end{array}\right], b=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right] \\
L=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
3 & 2 & 1 & 0 & 0 \\
4 & 3 & 2 & 1 & 0 \\
5 & 4 & 3 & 2 & 1
\end{array}\right], b=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right] \\
y_{1}=\frac{1}{1}=1 \\
y_{2}=\frac{2-2 \cdot 1}{1}=0 \\
y_{3}=\frac{3-3 \cdot 1-2 \cdot 0}{1}=0 \\
y_{4}=\frac{4-4 \cdot 1-3 \cdot 0-2 \cdot 0}{1}=0 \\
y_{5}=\frac{5-5 \cdot 1-4 \cdot 0-3 \cdot 0-2 \cdot 0}{1}=0 \\
y=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

Point d)

$$
\begin{gathered}
U x=y \\
U=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 2 & 2 & 2 & 2 \\
0 & 0 & 3 & 3 & 3 \\
0 & 0 & 0 & 4 & 4 \\
0 & 0 & 0 & 0 & 5
\end{array}\right] y=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
x_{5}=\frac{0}{5}=0 \\
x_{4}=\frac{0-4 \cdot 0}{4}=0 \\
x_{3}=\frac{0-3 \cdot 0-3 \cdot 0}{3}=0 \\
x_{2}=\frac{0-2 \cdot 0-2 \cdot 0-2 \cdot 0}{2}=0 \\
x_{1}=\frac{0-1 \cdot 0-1 \cdot 0-1 \cdot 0-1 \cdot}{1}=0 \\
x=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

Question 5

Point a)

$$
f(x)=x \quad K_{a b s}=\left|f^{\prime}(x)\right|=1 \quad K_{\text {rel }}=\left|\frac{1 \cdot x}{x}\right|=1
$$

Point b)

$$
f(x)=\sqrt[3]{x} \quad K_{a b s}=\left|f^{\prime}(x)\right|=\frac{1}{3 \sqrt[3]{x^{2}}} \quad K_{\text {rel }}=\left|\frac{1}{3 \sqrt[3]{x^{2}}} \cdot \frac{x}{\sqrt[3]{x}}\right|=\frac{1}{3}
$$

Point c)

$$
f(x)=\frac{1}{x} \quad K_{a b s}=\left|f^{\prime}(x)\right|=\frac{1}{x^{2}} \quad K_{\text {rel }}=\left|\frac{-x}{x^{2}} \cdot \frac{1}{\frac{1}{x}}\right|=1
$$

Point d)

$$
f(x)=e^{x} \quad K_{a b s}=\left|f^{\prime}(x)\right|=e^{x} \quad K_{\text {rel }}=\left|\frac{x e^{x}}{e^{x}}\right|=|x|
$$

Point e)

Cases $a), b$) and c) are well-conditioned for any x since their $K_{r} e l$ is not defined by x. Case d) is well-conditioned only for x s whose absolute value is in the order of magnitude of 1 or less, since $K_{r} e l$ in this case is exactly $|x|$.

