This repository has been archived on 2020-12-10. You can view files and clone it, but cannot push or open issues or pull requests.
IRProject/report/report.tex
2020-12-08 12:27:03 +01:00

194 lines
7.9 KiB
TeX

% vim: set ts=2 sw=2 et tw=80:
\documentclass{scrartcl}
\usepackage{hyperref}
\usepackage{parskip}
\usepackage{minted}
\usepackage[utf8]{inputenc}
\setlength{\parindent}{0pt}
\usepackage[margin=2.5cm]{geometry}
\title{\textit{Image Search IR System} \\\vspace{0.3cm}
\Large{WS2020-21 Information Retrieval Project}}
\author{Claudio Maggioni}
\begin{document}
\maketitle
\tableofcontents
\newpage
\section{Introduction}
This report is a summary of the work I have done to create the ``Image Search IR
system'', a proof-of-concept IR system implementation implementing the ``Image
Search Engine'' project (project \#13).
The project is built on a simple
\textit{Scrapy}-\textit{Solr}-\textit{HTML5+CSS+JS} stack. Installation
instructions, an in-depth look to the project components for scraping, indexing,
and displaying the results, and finally the user evaluation report, can all be
found in the following sections.
\section{Installation instructions}
\subsection{Project repository}
The project Git repository is located here:
\url{https://git.maggioni.xyz/maggicl/IRProject}.
\subsection{Solr installation}
The installation of the project and population of the test collection with the
scraped documents is automated by a single script. The script requires you have
downloaded \textit{Solr} version 8.6.2. as a ZIP file, i.e.\ the same
\textit{Solr} ZIP we had to download during lab lectures. Should you need to
download a copy of the ZIP file, you can find it here: \url{https://maggioni.xyz/solr-8.6.2.zip}.
Clone the project's git repository and position yourself with a shell on the
project's root directory. Then execute this command:
% linenos
\begin{minted}[frame=lines,framesep=2mm]{bash}
./solr_install.sh {ZIP path}
\end{minted}
where \texttt{\{ZIP path\}} is the path of the ZIP file mentioned earlier. This
will install, start, and update \textit{Solr} with the test collection.
\subsection{UI installation}
In order to start the UI, open with your browser of choice the file
\texttt{ui/index.html}. In order to use the UI, it is necessary to bypass
\texttt{Cross Origin Resource Sharing} security checks by downloading and
enabling a ``CORS everywhere'' extension. I suggest
\href{https://addons.mozilla.org/en-US/firefox/addon/cors-everywhere/}{this one} for
Mozilla Firefox and derivatives.
\subsection{Run the website scrapers}
A prerequisite to run the Flickr crawler is to have a working Scrapy Splash
instance listening on port \texttt{localhost:8050}. This can be achieved by
executing this Docker command, should a Docker installation be available:
\begin{minted}[frame=lines,framesep=2mm]{bash}
docker run -p 8050:8050 scrapinghub/scrapy
\end{minted}
In order to all the website scrapers, run the script \texttt{./scrape.sh} with
no arguments.
\section{Scraping}
The chosen three website to be scraped were \url{flickr.com}, a user-centric
image sharing service service aimed at photography amatures and professionals,
\url{123rf.com}, a stock image website, and \url{shutterstock.com}, another
stock image website.
The stock photo websites were scraped with standard scraping technology using
plain \texttt{scrapy}, while \textit{Flickr} was scraped using browser emulation
technology using \texttt{scrapy-splash} in order to execute Javascript code and
scrape infinite-scroll paginated data.
I would like to point out that in order to save space I scraped only image
links, and not the images themselves. Should any content that I scraped be deleted from the
services listed above, some results might not be correct as they could have been
deleted.
As a final note, since some websites are not so kind in their
\texttt{robots.txt} file to bots (\textit{Flickr} in particular blocks all
bots except Google), ``robots.txt compliance'' has been turned off for all
scrapers and the user agent has been changed to mimick a normal browser.
All scraper implementations and related files are located in the directory
\texttt{photo\_scraper/spiders}.
\subsection{\textit{Flickr}}
\subsubsection{Simulated browser technology \textit{Splash}}
As mentioned before, the implementation of the \textit{Flickr} scraper uses
\textit{Splash}, a browser emulation that supports Javascript execution and
simulated user interaction. This component is essential to allow for the website
to load correctly and to load as many photos as possible in the photo list
pagest scraped through emulation of the user performing an ``infinite'' scroll
down.
Here is the Lua script used by splash to emulate infinite scrolling. These exact
contents can be found in file
\texttt{infinite\_scroll.lua}.
\begin{minted}[linenos,frame=lines,framesep=2mm]{lua}
function main(splash)
local num_scrolls = 20
local scroll_delay = 0.8
local scroll_to = splash:jsfunc("window.scrollTo")
local get_body_height = splash:jsfunc(
"function() {return document.body.scrollHeight;}"
)
assert(splash:go(splash.args.url))
splash:wait(splash.args.wait)
for _ = 1, num_scrolls do
scroll_to(0, get_body_height())
splash:wait(scroll_delay)
end
return splash:html()
end
\end{minted}
Line 13 contains the instruction that scrolls down one page height. This
instruction runs in the loop of lines 12-15, which runs the scroll instruction
\texttt{num\_scrolls} by also waiting \texttt{scroll\_delay} seconds after every
execution.
After this operation is done, the resulting HTML markup is returned and normal
crawling tecniques can work on this intermediate result.
\subsubsection{Scraper implementation}
The Python implementation of the \textit{Flickr} scraper can be found under
\texttt{flickr.py}.
Sadly \textit{Flickr}, other than a recently posted gallery of images, offers no
curated list of image content or categorization that can allow for finding
images other than querying for them.
I therefore had to use the \textit{Flickr}
search engine to query for some common words (including the list of the 100 most
common english verbs). Then, each search result page is fed through
\textit{Splash} and the resulting markup is searched for image links. Each link
is opened to scrape the image link and its metadata.
\subsection{Implementation for \textit{123rf} and \textit{Shutterstock}}
The \textit{123rf} and \textit{Shutterstock} website do not require the use of
\textit{Splash} to be scraped and, as stock image websites, offer several
precompiled catalogs of images that can be easily scraped. The crawler
implementations, that can respectively be found in \texttt{stock123rf.py} and
\texttt{shutterstock.py} are pretty straightfoward, and
navigate from the list of categories, to each category's photo list, and then
to the individual photo page to scrape the image link and metadata.
\section{Indexing and \textit{Solr} configuration}
Solr configuration was probably the trickiest part of this project. I am not an
expert of Solr XML configuration quirks, and I am certainly have not become one
by implementng this project. However, I managed to assemble a configuration that
has both a tailored collection schema defined as XML and a custom Solr
controller to handle result clustering.
Configuration files for Solr can be found under the directory
\texttt{solr\_config} this directory is symlinked by the
\texttt{solr\_install.sh} installation script to appear as a folder named
\texttt{server/solr/photo} in the \texttt{solr} folder containing the Solr
installation. Therefore, the entire directory corresponds to the configuration
and data storage for the collection \texttt{photo}, the only collection present
in this project.
Please note that the \texttt{solr\_config/data} folder is
ignored by Git and thus not present in a freshly cloned repository: this is done
to preserve only the configuration files, and not the somewhat temporary
collection data. The collection data is uploaded every time
\texttt{solr\_install.sh} is used from CSV files located in the \texttt{scraped}
folder and produced by Scrapy.
\section{User interface}
\section{User evaluation}
\end{document}