This repository has been archived on 2021-09-27. You can view files and clone it, but cannot push or open issues or pull requests.
NC/mp3/Project_3_Maggioni_Claudio/src/Bench_rec_bisection.m

163 lines
4.6 KiB
Mathematica
Raw Normal View History

2020-10-21 13:21:51 +00:00
% Benchmark for recursively partitioning meshes, based on various
% bisection approaches
%
% D.P & O.S for Numerical Computing in USI
% add necessary paths
addpaths_GP;
nlevels_a = 3;
nlevels_b = 4;
2020-10-23 07:20:58 +00:00
%addpath /Users/maggicl/Git/matlab2tikz/src/;
2020-10-21 13:21:51 +00:00
fprintf(' *********************************************\n')
fprintf(' *** Recursive graph bisection benchmark ***\n');
fprintf(' *********************************************\n')
% load cases
cases = {
'airfoil1.mat';
'3elt.mat';
'barth4.mat';
'mesh3e1.mat';
'crack.mat';
};
nc = length(cases);
maxlen = 0;
for c = 1:nc
if length(cases{c}) > maxlen
maxlen = length(cases{c});
end
end
for c = 1:nc
fprintf('.');
sparse_matrices(c) = load(cases{c});
end
fprintf('\n\n Report Cases Nodes Edges\n');
fprintf(repmat('-', 1, 40));
fprintf('\n');
for c = 1:nc
spacers = repmat('.', 1, maxlen+3-length(cases{c}));
[params] = Initialize_case(sparse_matrices(c));
fprintf('%s %s %10d %10d\n', cases{c}, spacers,params.numberOfVertices,params.numberOfEdges);
end
%% Create results table
fprintf('\n%7s %16s %20s %16s %16s\n','Bisection','Spectral','Metis 5.0.2','Coordinate','Inertial');
fprintf('%10s %10d %6d %10d %6d %10d %6d %10d %6d\n','Partitions',8,16,8,16,8,16,8,16);
fprintf(repmat('-', 1, 100));
fprintf('\n');
for c = 1:nc
spacers = repmat('.', 1, maxlen+3-length(cases{c}));
fprintf('%s %s', cases{c}, spacers);
sparse_matrix = load(cases{c});
2020-10-23 07:20:58 +00:00
if c == 5
g = 1;
else
g = 0;
end
2020-10-21 13:21:51 +00:00
% Recursively bisect the loaded graphs in 8 and 16 subgraphs.
% Steps
% 1. Initialize the problem
[params] = Initialize_case(sparse_matrices(c));
2020-10-23 07:20:58 +00:00
A = params.Adj;
coords = params.coords;
2020-10-28 13:04:35 +00:00
W = A;
2020-10-23 07:20:58 +00:00
2020-10-21 13:21:51 +00:00
% 2. Recursive routines
2020-10-23 07:20:58 +00:00
% i. Spectral
sp8 = runtest(W, coords, @(a, b) bisection_spectral(a, b, 0), ...
3, '', 0);
sp16 = runtest(W, coords, @(a, b) bisection_spectral(a, b, 0), ...
4, 'Spectral', g);
2020-10-21 13:21:51 +00:00
% ii. Metis
2020-10-23 07:20:58 +00:00
m8 = runtest(W, coords, @(a, b) bisection_metis(a, b, 0), ...
3, '', 0);
m16 = runtest(W, coords, @(a, b) bisection_metis(a, b, 0), ...
4, 'METIS', g);
% iii. Coordinate
c8 = runtest(W, coords, @(a, b) bisection_coordinate(a, b, 0), ...
3, '', 0);
c16 = runtest(W, coords, @(a, b) bisection_coordinate(a, b, 0), ...
4, 'Coordinate', g);
2020-10-21 13:21:51 +00:00
% iv. Inertial
2020-10-23 07:20:58 +00:00
i8 = runtest(W, coords, @(a, b) bisection_inertial(a, b, 0), ...
3, '', 0);
i16 = runtest(W, coords, @(a, b) bisection_inertial(a, b, 0), ...
4, 'Inertial', g);
close;
2020-10-21 13:21:51 +00:00
% 3. Calculate number of cut edges
% 4. Visualize the partitioning result
2020-11-02 16:43:56 +00:00
fprintf('%6d %6d %10d %6d %10d %6d %10d %6d\n',sp8,sp16,...
m8,m16,c8,c16,i8,i16);
2020-10-21 13:21:51 +00:00
2020-10-23 07:20:58 +00:00
end
2020-11-02 16:43:56 +00:00
%Bisection Spectral Metis 5.0.2 Coordinate Inertial
%Partitions 8 16 8 16 8 16 8 16
%------------------------------------------------------------------------------------
%airfoil1.mat ... 327 578 320 563 516 819 577 897
%3elt.mat ....... 372 671 395 651 733 1168 880 1342
%barth4.mat ..... 505 758 405 689 875 1306 891 1350
%mesh3e1.mat .... 75 124 75 117 75 122 67 102
%crack.mat ...... 804 1303 784 1290 1343 1860 1061 1618
2020-10-23 07:20:58 +00:00
function n = runtest(A, xy, algorithm, depth, t, show_graphs)
g = 0;
if show_graphs == 1
g = 1;
title(strcat(t, ' bisection for crack with n=16'));
hold on;
end
n = recurse(A, xy, algorithm, 0.5, depth, g);
if show_graphs == 1
hold off;
%matlab2tikz(sprintf('../../ex4_%s.tex', t));
figure;
end
end
function n = recurse(A, xy, algorithm, color, depth, show_graphs)
2020-11-02 16:43:56 +00:00
warning('off','MATLAB:eigs:IllConditionedA')
2020-10-23 07:20:58 +00:00
[partA, partB] = algorithm(A, xy);
2020-11-02 16:43:56 +00:00
warning('on', 'MATLAB:eigs:IllConditionedA')
2020-10-23 07:20:58 +00:00
[n, ~] = cutsize(A, partA);
A1 = A(partA, partA);
xy1 = xy(partA, :);
A2 = A(partB, partB);
xy2 = xy(partB, :);
depth = depth - 1;
if depth > 0
n = n + recurse(A1, xy1, algorithm, color * 1.5, depth, show_graphs);
n = n + recurse(A2, xy2, algorithm, color * 0.5, depth, show_graphs);
elseif show_graphs == 1
gplot(A1, xy1);
gplot(A2, xy2);
end
2020-10-21 13:21:51 +00:00
2020-10-23 07:20:58 +00:00
if show_graphs == 1
A12 = sparse(size(A));
A12(partA, partB) = A(partA, partB);
A12(partB, partA) = A(partB, partA);
gplot(A12, xy);
end
2020-10-21 13:21:51 +00:00
end