This repository has been archived on 2021-09-27. You can view files and clone it, but cannot push or open issues or pull requests.
NC/mp5/res_log.tex

208 lines
5.1 KiB
TeX
Raw Normal View History

2020-11-27 22:19:51 +00:00
% This file was created by matlab2tikz.
%
\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
%
\begin{tikzpicture}
\begin{axis}[%
2020-11-30 19:26:06 +00:00
width=6.028in,
height=4.754in,
at={(1.011in,0.642in)},
2020-11-27 22:19:51 +00:00
scale only axis,
xmin=0,
2020-11-30 19:26:06 +00:00
xmax=160,
2020-11-27 22:19:51 +00:00
ymode=log,
2020-11-30 19:26:06 +00:00
ymin=1e-09,
ymax=1,
2020-11-27 22:19:51 +00:00
yminorticks=true,
axis background/.style={fill=white},
title style={font=\bfseries},
title={Residual norms over iteration (y is log)}
]
\addplot [color=mycolor1, forget plot]
table[row sep=crcr]{%
2020-11-30 19:26:06 +00:00
1 1\\
2 0.557596535615506\\
3 0.0776565625508993\\
4 0.0198777323861488\\
5 0.00796998880225869\\
6 0.00379999756962287\\
7 0.0020374948726527\\
8 0.00117378505868276\\
9 0.000679072640424649\\
10 0.000460205525227464\\
11 0.000299176988582771\\
12 0.000208705837325249\\
13 0.000154155368421638\\
14 0.000112123271112138\\
15 8.51723029158506e-05\\
16 6.84145894011081e-05\\
17 5.22773173463893e-05\\
18 4.19658990284636e-05\\
19 3.35813556680048e-05\\
20 2.69909819855066e-05\\
21 2.16953761012216e-05\\
22 1.75366202909715e-05\\
23 1.58613744370523e-05\\
24 1.07527796769547e-05\\
25 1.21386374874815e-05\\
26 1.02818699879239e-05\\
27 8.94827138078525e-06\\
28 7.32098660262362e-06\\
29 6.29855369167726e-06\\
30 5.75608316894847e-06\\
31 5.01303204699423e-06\\
32 4.32711144148808e-06\\
33 3.75161010629661e-06\\
34 3.13429056757287e-06\\
35 2.97535388105766e-06\\
36 2.59579082920428e-06\\
37 2.35613630297938e-06\\
38 2.13570046200869e-06\\
39 1.91918226507556e-06\\
40 1.79412386278695e-06\\
41 1.60497187780807e-06\\
42 1.50673230165654e-06\\
43 1.29912483256279e-06\\
44 1.18346887626955e-06\\
45 1.20647020748118e-06\\
46 9.3251240253618e-07\\
47 1.0443397517104e-06\\
48 7.81977076368339e-07\\
49 7.06367946061837e-07\\
50 6.4448540591806e-07\\
51 5.8599197172186e-07\\
52 5.19890971305916e-07\\
53 4.77565688325081e-07\\
54 4.45837257417211e-07\\
55 4.52354751810163e-07\\
56 4.29038013881601e-07\\
57 4.19929738903634e-07\\
58 3.83172910236919e-07\\
59 3.69121286102551e-07\\
60 3.7162945951419e-07\\
61 3.46046785121521e-07\\
62 3.2757610333777e-07\\
63 3.15320978192865e-07\\
64 2.96758711344714e-07\\
65 2.96817636331721e-07\\
66 2.71124713000919e-07\\
67 2.62909013135003e-07\\
68 2.43462036182122e-07\\
69 2.28404291071355e-07\\
70 2.24415864473535e-07\\
71 2.28468445317059e-07\\
72 2.16184931431001e-07\\
73 2.03658004162582e-07\\
74 1.83416377348938e-07\\
75 1.77025922497321e-07\\
76 1.70006600401098e-07\\
77 1.63491825605367e-07\\
78 1.57088823572816e-07\\
79 1.6232157488019e-07\\
80 1.55517018193347e-07\\
81 1.44132341985942e-07\\
82 1.33984748126276e-07\\
83 1.25196828216566e-07\\
84 1.21215390780978e-07\\
85 1.15338855777099e-07\\
86 1.08276150400162e-07\\
87 1.04805124156927e-07\\
88 1.01804326380992e-07\\
89 1.0010166263465e-07\\
90 9.48101967192271e-08\\
91 8.89240656896784e-08\\
92 8.81989115707906e-08\\
93 8.26647202805855e-08\\
94 7.78552030683533e-08\\
95 8.16807953528358e-08\\
96 7.66807903209987e-08\\
97 7.25436978662745e-08\\
98 6.71702595720625e-08\\
99 7.01343166575355e-08\\
100 6.80449977565014e-08\\
101 6.68192875014292e-08\\
102 6.22828481503855e-08\\
103 6.14945471895087e-08\\
104 6.70743224722449e-08\\
105 6.88753801346713e-08\\
106 6.74234915967769e-08\\
107 6.38752997351369e-08\\
108 6.10832293660283e-08\\
109 5.60972305767953e-08\\
110 5.08646226781961e-08\\
111 4.95616876939365e-08\\
112 4.46580704289759e-08\\
113 4.2687817302539e-08\\
114 4.10291135987935e-08\\
115 3.78768817309767e-08\\
116 3.73532344958446e-08\\
117 3.51670172127996e-08\\
118 3.22365221541983e-08\\
119 3.0914108557954e-08\\
120 3.02505081670252e-08\\
121 2.87114558023773e-08\\
122 2.66853087438055e-08\\
123 2.60049357892773e-08\\
124 2.51289922847544e-08\\
125 2.39005712471205e-08\\
126 2.24094810183141e-08\\
127 2.01607019229326e-08\\
128 1.92164353138885e-08\\
129 1.82687256142865e-08\\
130 1.78764123154733e-08\\
131 1.90420480961642e-08\\
132 1.79866998160551e-08\\
133 1.62987103158868e-08\\
134 1.64054691550642e-08\\
135 1.53093691487969e-08\\
136 1.48209887890633e-08\\
137 1.48119659868498e-08\\
138 1.39479300275188e-08\\
139 1.30269784768553e-08\\
140 1.39128297693094e-08\\
141 1.35601176412506e-08\\
142 1.31199716923384e-08\\
143 1.16605449828788e-08\\
144 1.1256315915413e-08\\
145 1.10059046096852e-08\\
146 1.05336940404569e-08\\
147 9.87947792918718e-09\\
148 9.87385221564589e-09\\
149 9.86634931285779e-09\\
150 9.87265433744658e-09\\
151 8.57424740655266e-09\\
152 7.71781430780305e-09\\
2020-11-27 22:19:51 +00:00
};
\addplot [color=mycolor2, forget plot]
table[row sep=crcr]{%
2020-11-30 19:26:06 +00:00
1 1\\
2 0.00579815823253321\\
3 0.000296979878939853\\
4 0.000149409715840567\\
5 7.77022863220549e-05\\
6 6.2599388664747e-05\\
7 3.67776811885644e-05\\
8 2.26985377046381e-05\\
9 2.75130507463434e-05\\
10 1.74951186586756e-05\\
11 2.49605697423791e-05\\
12 1.12366572676273e-05\\
13 1.54813768580115e-05\\
14 1.23158281548519e-05\\
15 8.35804590504644e-06\\
16 1.06813390449761e-05\\
17 4.65224806020403e-06\\
18 4.34451840639611e-06\\
19 1.95974449943222e-06\\
20 1.88311897094728e-06\\
21 1.76128803348428e-06\\
22 1.275240225499e-06\\
23 1.36310372428718e-06\\
24 1.03510657531701e-06\\
25 1.00121067351798e-06\\
26 9.55653227048963e-07\\
2020-11-27 22:19:51 +00:00
};
\end{axis}
\end{tikzpicture}%