66 lines
1.2 KiB
Mathematica
66 lines
1.2 KiB
Mathematica
|
function x = pagerank(U,G,p)
|
||
|
% PAGERANK Google's PageRank
|
||
|
% pagerank(U,G,p) uses the URLs and adjacency matrix produced by SURFER,
|
||
|
% together with a damping factory p, (default is .85), to compute and plot
|
||
|
% a bar graph of page rank, and print the dominant URLs in page rank order.
|
||
|
% x = pagerank(U,G,p) returns the page ranks instead of printing.
|
||
|
% See also SURFER, SPY.
|
||
|
|
||
|
if nargin < 3, p = .85; end
|
||
|
|
||
|
|
||
|
if(ischar(U))
|
||
|
U=cellstr(U);
|
||
|
end
|
||
|
|
||
|
if(isreal(U))
|
||
|
U=(num2cell(U));
|
||
|
end
|
||
|
|
||
|
|
||
|
% Eliminate any self-referential links
|
||
|
|
||
|
G = G - diag(diag(G));
|
||
|
|
||
|
% c = out-degree, r = in-degree
|
||
|
|
||
|
n = size(G,1);
|
||
|
c = sum(G,1);
|
||
|
r = sum(G,2);
|
||
|
|
||
|
% Scale column sums to be 1 (or 0 where there are no out links).
|
||
|
|
||
|
k = find(c~=0);
|
||
|
D = sparse(k,k,1./c(k),n,n);
|
||
|
|
||
|
% Solve (I - p*G*D)*x = e
|
||
|
|
||
|
e = ones(n,1);
|
||
|
I = speye(n,n);
|
||
|
x = (I - p*G*D)\e;
|
||
|
|
||
|
% Normalize so that sum(x) == 1.
|
||
|
|
||
|
x = x/sum(x);
|
||
|
|
||
|
% Bar graph of page rank.
|
||
|
|
||
|
shg
|
||
|
bar(x)
|
||
|
title('Page Rank')
|
||
|
|
||
|
% Print URLs in page rank order.
|
||
|
|
||
|
if nargout < 1
|
||
|
[~,q] = sort(-x);
|
||
|
disp(' page-rank in out url')
|
||
|
k = 1;
|
||
|
while (k <= n) && (x(q(k)) >= .005)
|
||
|
j = q(k);
|
||
|
temp1 = r(j);
|
||
|
temp2 = c(j);
|
||
|
fprintf(' %3.0f %8.4f %4.0f %4.0f %s\n', j,x(j),full(temp1),full(temp2),U{j})
|
||
|
k = k+1;
|
||
|
end
|
||
|
end
|