45 lines
1.3 KiB
Mathematica
45 lines
1.3 KiB
Mathematica
|
clear variables;
|
||
|
close all;
|
||
|
warning OFF;
|
||
|
|
||
|
addpath ../datasets
|
||
|
addpath ../datasets/Meshes
|
||
|
|
||
|
[Pts_spirals,Pts_clusterin,Pts_corn,Pts_halfk,Pts_fullmoon,Pts_out] = getPoints();
|
||
|
close all;
|
||
|
|
||
|
TITLES = ["Two Spirals", "Cluster in cluster", "Corners", "Half crescent", "Full crescent", "Outlier"];
|
||
|
RUNS = {Pts_spirals, Pts_clusterin, Pts_corn, Pts_halfk, Pts_fullmoon, Pts_out};
|
||
|
KS = {2, 2, 4, 2, 2, 4};
|
||
|
|
||
|
B = zeros(100, 6);
|
||
|
|
||
|
for j = 20:70
|
||
|
for i = 1:6
|
||
|
p = (j - 20) / 10;
|
||
|
% Specify the number of clusters
|
||
|
Pts = RUNS{i};
|
||
|
K = KS{i};
|
||
|
n = size(Pts, 1);
|
||
|
|
||
|
% Create Gaussian similarity function
|
||
|
[S] = similarityfunc(Pts(:,1:2), 10^p * log(n));
|
||
|
|
||
|
% Find the minimal spanning tree of the full graph. Use the information
|
||
|
% to determine a valid value for epsilon
|
||
|
H = minSpanTree(S);
|
||
|
epsilon = max(H(H > 0), [], 'all');
|
||
|
|
||
|
% Create the epsilon similarity graph
|
||
|
[G] = epsilonSimGraph(epsilon,Pts);
|
||
|
|
||
|
% Create the adjacency matrix for the epsilon case
|
||
|
W = S .* G;
|
||
|
|
||
|
% Create the Laplacian matrix and implement spectral clustering
|
||
|
[L,Diag] = CreateLapl(W);
|
||
|
B(j, i) = rcond(L);
|
||
|
fprintf("%s - %g: %g\n", TITLES(i), 10^p, B(j,i));
|
||
|
end
|
||
|
end
|
||
|
|