mp4: done 1a-c in MATLAB

This commit is contained in:
Claudio Maggioni (maggicl) 2020-11-04 14:59:14 +01:00
parent 13522202fc
commit 34b290c569
32 changed files with 1113 additions and 0 deletions

15
mp4/Makefile Normal file
View file

@ -0,0 +1,15 @@
filename=template
pdf:
pdflatex ${filename}
#bibtex ${filename}
pdflatex ${filename}
pdflatex ${filename}
make clean
read:
evince ${filename}.pdf &
clean:
rm -f *.out *.log *.bbl *.blg *.aux ${filename}.log ${filename}.ps ${filename}.aux ${filename}.out ${filename}.dvi ${filename}.bbl ${filename}.blg

View file

@ -0,0 +1,30 @@
\documentclass[unicode,11pt,a4paper,oneside,numbers=endperiod,openany]{scrartcl}
\input{assignment.sty}
\begin{document}
\setassignment
\setduedate{Wednesday, 18 November 2020, 11:55 PM}
\serieheader{Numerical Computing}{2020}{Student: FULL NAME}{Discussed with: FULL NAME}{Solution for Project 4}{}
\newline
\assignmentpolicy
\begin{enumerate}
\item \textbf{Spectral clustering of non-convex sets [60 points]:}
\item \textbf{Spectral clustering of real-world graphs [40 points]:}
\end{enumerate}
\end{document}

View file

@ -0,0 +1,43 @@
function data = clusterincluster(N, r1, r2, w1, w2, arms)
if nargin < 1
N = 1000;
end
if nargin < 2
r1 = 1;
end
if nargin < 3
r2 = 5*r1;
end
if nargin < 4
w1 = 0.8;
end
if nargin < 5
w2 = 1/3;
end
if nargin < 6
arms = 64;
end
data = [];
N1 = floor(N/2);
N2 = N-N1;
phi1 = rand(N1,1) * 2 * pi;
% dist1 = r1 + randint(N1,1,3)/3 * r1 * w1;
dist1 = r1 + (randi(3,N1,1)-1)/3 * r1 * w1;
d1 = [dist1 .* cos(phi1) dist1 .* sin(phi1) zeros(N1,1)];
perarm = round(N2/arms);
N2 = perarm * arms;
radperarm = (2*pi)/arms;
phi2 = ((1:N2) - mod(1:N2, perarm))/perarm * (radperarm);
phi2 = phi2';
dist2 = r2 * (1 - w2/2) + r2 * w2 * mod(1:N2, perarm)'/perarm;
d2 = [dist2 .* cos(phi2) dist2 .* sin(phi2) ones(N2,1)];
data = [d1;d2];
scatter(data(:,1), data(:,2), 20, data(:,3)); axis square;
end

View file

@ -0,0 +1,35 @@
function data = corners(N, scale, gapwidth, cornerwidth)
if nargin < 1
N = 1000;
end
if mod(N,8) ~= 0
N = round(N/8) * 8;
end
if nargin < 2
scale = 10;
end
if nargin < 3
gapwidth = 2;
end
if nargin < 4
cornerwidth = 2;
end
perCorner = N/4;
xplusmin = [ones(perCorner,1); -1*ones(perCorner,1); ones(perCorner,1); -1*ones(perCorner,1)];
yplusmin = [ones(perCorner,1); -1*ones(2*perCorner,1); ones(perCorner,1)];
horizontal = [xplusmin(1:2:end) * gapwidth + xplusmin(1:2:end) * scale .* rand(N/2,1), ...
yplusmin(1:2:end) * gapwidth + cornerwidth * yplusmin(1:2:end) .* rand(N/2,1), ...
floor((0:N/2-1)'/(perCorner*.5))];
vertical = [xplusmin(2:2:end) * gapwidth + cornerwidth * xplusmin(2:2:end) .* rand(N/2,1), ...
yplusmin(2:2:end) * gapwidth + yplusmin(2:2:end) * scale .* rand(N/2,1), ...
floor((0:N/2-1)'/(perCorner*.5))];
data= [horizontal/2; vertical/2];
end

View file

@ -0,0 +1,31 @@
function data = crescentfullmoon(N, r1, r2, r3)
if nargin < 1
N = 1000;
end
if mod(N,4) ~= 0
N = round(N/4) * 4;
end
if nargin < 2
r1 = 5;
end
if nargin < 3
r2 = 10;
end
if nargin < 4
r3 = 15;
end
N1 = N/4;
N2 = N-N1;
phi1 = rand(N1,1) * 2 * pi;
R1 = sqrt(rand(N1, 1));
moon = [cos(phi1) .* R1 * r1 sin(phi1) .* R1 * r1 zeros(N1,1)];
d = r3 - r2;
phi2 = pi + rand(N2,1) * pi;
R2 = sqrt(rand(N2,1));
crescent = [cos(phi2) .* (r2 + R2 * d) sin(phi2) .* (r2 + R2 * d) ones(N2,1)];
data = [moon/2; crescent/2];

View file

@ -0,0 +1,30 @@
function [Barth,Airfoil,Crack] = getGraphs()
% function to get the Adjacency matrix and the coordinate list of various graphs
% dimosthenis.pasadakis@usi.ch
% ICS, USI.
clear all;
close all;
addpath Meshes
%
load('barth.mat');
Barth.W = Problem.A;
Barth.Pts = Problem.aux.coord;
%
load('airfoil1.mat');
Airfoil.W = Problem.A;
Airfoil.Pts = Problem.aux.coord;
%
load('crack_dual.mat');
Crack.W = Problem.A;
Crack.Pts = Problem.aux.coord;
figure;
subplot(131)
gplotLength(Barth.W,Barth.Pts,2);
subplot(132)
gplotLength(Airfoil.W,Airfoil.Pts,2);
subplot(133)
gplotLength(Crack.W,Crack.Pts,2);
end

View file

@ -0,0 +1,63 @@
function [Pts_spirals,Pts_clusterin,Pts_corn,Pts_halfk,Pts_fullmoon,Pts_out] = getPoints()
% Function to get the coordinate list of various pointclouds
% ----------------------------------------------------------
% Copyright (c) 2013, Jeroen Kools
%
% Modified for academic purposes by D. Pasadakis
% dimosthenis.pasadakis@usi.ch
% ICS, USI.
clear all;
close all;
figure;
hold on;
dotsize = 12;
colormap([1 0 .5; % magenta
0 0 .8; % blue
0 .6 0; % dark green
.3 1 0]); % bright green
subplot(231);
Pts_spirals = twospirals();
scatter(Pts_spirals(:,1), Pts_spirals(:,2), dotsize,'k'); axis equal;
% scatter(Pts_spirals(:,1), Pts_spirals(:,2), dotsize, Pts_spirals(:,3)); axis equal; % visualization
% axis off;
title('Two spirals');
subplot(232);
Pts_clusterin = clusterincluster();
scatter(Pts_clusterin(:,1), Pts_clusterin(:,2), dotsize,'k'); axis equal;
% scatter(Pts_clusterin(:,1),Pts_clusterin(:,2), dotsize, Pts_clusterin(:,3)); axis equal; % visualization
% axis off;
title('Cluster in cluster');
subplot(233);
Pts_corn = corners();
scatter(Pts_corn(:,1), Pts_corn(:,2), dotsize,'k'); axis equal;
% scatter(Pts_corn(:,1),Pts_corn(:,2), dotsize, Pts_corn(:,3)); axis equal; % visualization
% axis off;
title('Corners');
subplot(234);
Pts_halfk = halfkernel();
scatter(Pts_halfk(:,1), Pts_halfk(:,2), dotsize,'k'); axis equal;
% scatter(Pts_halfk(:,1),Pts_halfk(:,2), dotsize, Pts_halfk(:,3)); axis equal; % visualization
% axis off;
title('Half-kernel');
subplot(235);
Pts_fullmoon = crescentfullmoon();
scatter(Pts_fullmoon(:,1), Pts_fullmoon(:,2), dotsize,'k'); axis equal;
% scatter(Pts_fullmoon(:,1),Pts_fullmoon(:,2), dotsize,Pts_fullmoon(:,3)); axis equal; % visualization
% axis off;
title('Crescent & Full Moon');
subplot(236);
Pts_out = outlier();
scatter(Pts_out(:,1), Pts_out(:,2), dotsize,'k'); axis equal;
% scatter(Pts_out(:,1),Pts_out(:,2),dotsize,Pts_out(:,3)); axis equal; % visualization
% axis off;
title('Outlier');
end

View file

@ -0,0 +1,48 @@
function [d] = gplotLength(a, x, linewidth)
% function [d] = gplotFancy2(a, x,linewidth)
%
% plot with colors depending on lengths of
% edges in x,
% a: Adjacency
% x: coords
% linewidth: for ploting
[ai,aj] = find(a);
m = length(ai);
d = double(a);
for i = 1:m,
d(ai(i),aj(i)) = norm(x(ai(i),:)-x(aj(i),:));
end
[di,dj,dv] = find(d);
sdv = sort(dv);
l = length(sdv);
ran = [64:-1:0]/64;
ran = ran.^2;
ran = 1-ran;
ll = round([1:l/65:l]);
ranges = sdv(ll);
hold on;
set(gca,'Color',[0 0 0])
cm = jet;
%cm = .3+.7*cm;
for i = 1:64;
ind = (dv <= ranges(i+1))&(dv>ranges(i));
thisa = sparse(ai(ind),aj(ind),1);
[gpx,gpy] = gplot(thisa,x);
if (~isempty(gpx)),
ph(i) = plot(gpx,gpy,'-','Color',cm(i,:),'LineWidth',linewidth);
axis off
end
end

View file

@ -0,0 +1,32 @@
function data = halfkernel(N, minx, r1, r2, noise, ratio)
if nargin < 1
N = 1000;
end
if mod(N,2) ~= 0
N = N + 1;
end
if nargin < 2
minx = -20;
end
if nargin < 3
r1 = 20;
end
if nargin < 4
r2 = 35;
end
if nargin < 5
noise = 4;
end
if nargin < 6
ratio = 0.6;
end
phi1 = rand(N/2,1) * pi;
inner = [minx + r1 * sin(phi1) - .5 * noise + noise * rand(N/2,1) r1 * ratio * cos(phi1) - .5 * noise + noise * rand(N/2,1) ones(N/2,1)];
phi2 = rand(N/2,1) * pi;
outer = [minx + r2 * sin(phi2) - .5 * noise + noise * rand(N/2,1) r2 * ratio * cos(phi2) - .5 * noise + noise * rand(N/2,1) zeros(N/2,1)];
data = [inner/4; outer/4];
end

View file

@ -0,0 +1,38 @@
function data = outlier(N, r, dist, outliers, noise)
if nargin < 1
N = 600;
end
if nargin < 2
r = 20;
end
if nargin < 3
dist = 30;
end
if nargin < 4
outliers = 0.04;
end
if nargin < 5
noise = 5;
end
N1 = round(N * (.5-outliers));
N2 = N1;
N3 = round(N * outliers);
N4 = N-N1-N2-N3;
phi1 = rand(N1,1) * pi;
r1 = sqrt(rand(N1,1))*r;
P1 = [-dist + r1.*sin(phi1) r1.*cos(phi1) zeros(N1,1)];
phi2 = rand(N2,1) * pi;
r2 = sqrt(rand(N2,1))*r;
P2 = [dist - r2.*sin(phi2) r2.*cos(phi2) 3*ones(N2,1)];
P3 = [rand(N3,1)*noise dist+rand(N3,1)*noise 2*ones(N3,1)];
P4 = [rand(N4,1)*noise -dist+rand(N4,1)*noise ones(N4,1)];
data = [P1/4.5; P2/4.5; P3/4.5; P4/4.5];
end

View file

@ -0,0 +1,34 @@
function data = twospirals(N, degrees, start, noise)
% Generate "two spirals" dataset with N instances.
% degrees controls the length of the spirals
% start determines how far from the origin the spirals start, in degrees
% noise displaces the instances from the spiral.
% 0 is no noise, at 1 the spirals will start overlapping
if nargin < 1
N = 2000;
end
if nargin < 2
degrees = 570;
end
if nargin < 3
start = 90;
end
if nargin < 5
noise = 0.2;
end
deg2rad = (2*pi)/360;
start = start * deg2rad;
N1 = floor(N/2);
N2 = N-N1;
n = start + sqrt(rand(N1,1)) * degrees * deg2rad;
d1 = [-cos(n).*n + rand(N1,1)*noise sin(n).*n+rand(N1,1)*noise zeros(N1,1)];
n = start + sqrt(rand(N1,1)) * degrees * deg2rad;
d2 = [cos(n).*n+rand(N2,1)*noise -sin(n).*n+rand(N2,1)*noise ones(N2,1)];
data = [d1/2;d2/2];
end

View file

@ -0,0 +1,65 @@
% Cluster 2D real-world graphs with spectral clustering and compare with k-means
% USI, ICS, Lugano
% Numerical Computing
clear all;close all;
warning OFF;
addpath ../datasets
addpath ../datasets/Meshes
load airfoil1.mat
% load barth.mat
% load grid2.mat
% load 3elt.mat
% Specify the number of clusters
K = 4;
% Read graph
W = Problem.A;
Pts = Problem.aux.coord;
n = size(Pts,1);
% dummy var
dummy_map = ones(n,1);
figure;
spy(W)
title('Adjacency matrix')
%% 2a) Create the Laplacian matrix and plot the graph using the 2nd and 3rd eigenvectors
% \----------------------------/
% Your implementation
% \----------------------------/
% Eigen-decomposition
% \----------------------------/
% Your implementation
% \----------------------------/
% Plot and compare
figure;
subplot(1,2,1);
gplot(W,Pts)
xlabel('Nodal coordinates')
subplot(1,2,2);
gplot(W,Pts)
xlabel('TODO: Plot using Eigenvector coordinates')
%% 2b) Cluster each graph in K = 4 clusters with the spectral and the
% k-means method, and compare yourresults visually for each case.
% \----------------------------/
% Your implementation
% \----------------------------/
% Compare and visualize
figure;
subplot(1,2,1);
gplotmap(W,Pts,dummy_map)
title('TODO: Plot the spectral clusters')
subplot(1,2,2);
gplotmap(W,Pts,dummy_map)
title('TODO: Plot the K-means clusters')
%% 2c) Calculate the number of nodes per cluster
[Spec_nodes,Kmeans_nodes] = USI_ClusterMetrics(K,dummy_map,dummy_map);

View file

@ -0,0 +1,13 @@
function [Spec_nodes,Kmeans_nodes] = ClusterMetrics(K,x_spec,x_kmeans)
%% METRICS
Spec_nodes = 0;
Kmeans_nodes = 0;
% 2c) Calculate the number of nodes per cluster (for k-means and spectral
% clustering) and plot them in a histogram.
% \----------------------------/
% Your implementation
% \----------------------------/
end

View file

@ -0,0 +1,64 @@
% Cluster 2D pointclouds with spectral clustering and compare with k-means
% USI, ICS, Lugano
% Numerical Computing
clear variables;
close all;
warning OFF;
addpath ../datasets
addpath ../datasets/Meshes
% Specify the number of clusters
K = 2;
%% 1a) Get coordinate list from pointclouds
% Coords used in this script
Pts = getPoints();
figure;
scatter(Pts(:,1),Pts(:,2))
title('Two Spirals')
n = size(Pts, 1);
% Create Gaussian similarity function
[S] = similarityfunc(Pts(:,1:2));
%% 1b) Find the minimal spanning tree of the full graph. Use the information
% to determine a valid value for epsilon
H = minSpanTree(S);
epsilon = max(H(H > 0), [], 'all');
%% 1c) Create the epsilon similarity graph
[G] = epsilonSimGraph(epsilon,Pts, S);
%% 1d) Create the adjacency matrix for the epsilon case
W = S .* G;
figure;
gplotg(W,Pts(:,1:2))
title('Adjacency matrix')
%% 1e) Create the Laplacian matrix and implement spectral clustering
[L,Diag] = CreateLapl(W);
% \----------------------------/
% Your implementation
% \----------------------------/
% Cluster rows of eigenvector matrix of L corresponding to K smallest
% eigennalues. Use kmeans for that.
[D_spec,x_spec] = kmeans_mod(Pts,K,n);
%% 1f) Run K-means on input data
% \----------------------------/
% Your implementation
% \----------------------------/
[D_kmeans,x_kmeans] = kmeans_mod(Pts,K,n);
%% 1g) Visualize spectral and k-means clustering results
figure;
subplot(1,2,1)
gplotmap(W,Pts,dummy_map)
title('TODO: Plot the spectral clusters')
subplot(1,2,2)
gplotmap(W,Pts,dummy_map)
title('TODO: Plot the K-means clusters')

View file

@ -0,0 +1,18 @@
function [L,Diag] = CreateLapl(W)
% Create the Laplacian matrix of a graph
% Input
% W : Adjacency matrix
% Output
% L : Laplacian
% Degree matrix
Diag = zeros(size(W,1));
for i = 1:size(W,1)
Diag(i,i) = sum(W(:,i));
end
% Construct the Laplacian
L = Diag - W;
end

View file

@ -0,0 +1,19 @@
function [G] = epsilonSimGraph(epsilon, Pts, S)
% Construct an epsilon similarity graph
% Input
% epsilon: size of neighborhood (calculate from Prim's Algorithm)
% Pts : coordinate list of the sample
%
% Output
% A : the epsilon similarity matrix
%
% USI, ICS, Lugano
% Numerical Computing
fprintf('----------------------------\n');
fprintf('epsilon similarity graph\n');
fprintf('----------------------------\n');
G = S <= epsilon;
end

View file

@ -0,0 +1,48 @@
function [d] = gplotLength(a, x, linewidth)
% function [d] = gplotLength(a, x,linewidth)
%
% plot with colors depending on lengths of
% edges in x,
% a: Adjacency
% x: coords
% linewidth: for ploting
[ai,aj] = find(a);
m = length(ai);
d = double(a);
for i = 1:m,
d(ai(i),aj(i)) = norm(x(ai(i),:)-x(aj(i),:));
end
[di,dj,dv] = find(d);
sdv = sort(dv);
l = length(sdv);
ran = [64:-1:0]/64;
ran = ran.^2;
ran = 1-ran;
ll = round([1:l/65:l]);
ranges = sdv(ll);
clf; hold on;
set(gca,'Color',[0 0 0])
cm = jet;
%cm = .3+.7*cm;
for i = 1:64;
ind = (dv <= ranges(i+1))&(dv>ranges(i));
thisa = sparse(ai(ind),aj(ind),1);
[gpx,gpy] = gplot(thisa,x);
if (~isempty(gpx)),
ph(i) = plot(gpx,gpy,'-','Color',cm(i,:),'LineWidth',linewidth);
axis off
end
end

View file

@ -0,0 +1,61 @@
function handle = gplotg(A,xy,lc)
% GPLOTG : Plot a "graph theoretic" graph.
%
% handle = gplotg(A,xy) plots the graph specified by A and xy.
% A graph, G, is a set of nodes numbered from 1 to n,
% and a set of connections, or edges, between them.
% In order to plot G, two matrices are needed.
% The adjacency matrix, A, has a(i,j) nonzero if and
% only if node i is connected to node j. The coordinates
% array, xy, is an n-by-2 or n-by-3 matrix with the position
% for node i in the i-th row, xy(i,:) = [x(i) y(i)],
% or xy(i,:) = [x(i) y(i) z(i)].
%
% gplotg(A,xy,lc) uses line type and color instead of the
% default, 'r-'. For example, lc = 'g:'. See PLOT.
%
% Unlike gplot, gplotg sets 'erasemode' to 'none'
% so a graph won't redraw if something is drawn over it.
% Also, gplotg returns the handle to the plot.
% Also, gplotg can handle graphs with 3D coordinates.
%
% See also: SPY, TPLOT, SUBMESH, UNMESH.
%
% John Gilbert, 1991.
% Modified 1-21-91, LS; 2-28-92, CBM; 6-14-01, JRG;
% Copyright (c) 1991-92 by the MathWorks, Inc.
% John Gilbert and Shanghua Teng, 1992-1993.
% Copyright (c) 1990-1996 by Xerox Corporation. All rights reserved.
% HELP COPYRIGHT for complete copyright and licensing notice.
if nargin < 3,
lc = 'r-';
end;
[i,j] = find(A);
[ignore, p] = sort(max(i,j));
i = i(p);
j = j(p);
% Create a long, NaN-seperated list of line segments,
% rather than individual segments.
X = [ xy(i,1) xy(j,1) NaN*ones(size(i))]';
Y = [ xy(i,2) xy(j,2) NaN*ones(size(i))]';
X = X(:);
Y = Y(:);
if size(xy,2) == 2
h = plot (X, Y, lc, 'erasemode', 'none');
else
set(gca,'drawmode','fast');
Z = [ xy(i,3) xy(j,3) NaN*ones(size(i))]';
Z = Z(:);
h = plot3 (X, Y, Z, lc, 'erasemode', 'none');
end;
axis equal;
axis off;
if nargout >= 1
handle = h;
end;

View file

@ -0,0 +1,86 @@
function handle = gplotmap(A,xy,map,pcolor,ecolor)
% GPLOTMAP : Plot a partitioned graph in 2 or 3 dimensions.
%
% gplotmap(A,xy,map) plots the n-vertex graph specified
% by the n by n adjacency (or Laplacian) matrix A
% and the n by 2 or 3 matrix of coordinates xy.
% Argument map is an n-vector of part numbers, which
% assigns each vertex to a part.
%
% By default, edges that join different parts are omitted, and
% the picture shows each part in a different color. The call
%
% gplotmap(A,xy,map,pcolor,ecolor)
%
% uses color "pcolor" for the parts and "ecolor" for the
% edges between the parts. If "pcolor" has multiple rows,
% each part gets the color of one row (in cyclic order).
%
% See also GPLOTPART.
%
% John Gilbert 2 August 1994
% Copyright (c) 1990-1996 by Xerox Corporation. All rights reserved.
% HELP COPYRIGHT for complete copyright and licensing notice.
[n,n] = size(A);
if nargin < 3,
map = zeros(1,n);
end;
if nargin < 4
pcolor = [];
end;
if nargin < 5,
ecolor = [];
end;
parts = setfilter(map);
nparts = length(parts);
if length(pcolor) == 0,
pcolor = hsv(nparts);
pcolor = pcolor(randperm(nparts),:);
end;
% clf reset
% colordef(gcf,'black')
if size(xy,2) == 2
axis([min(xy(:,1)) max(xy(:,1)) min(xy(:,2)) max(xy(:,2))]);
else
axis([min(xy(:,1)) max(xy(:,1)) min(xy(:,2)) max(xy(:,2)) ...
min(xy(:,3)) max(xy(:,3))]);
end;
axis equal;
axis off;
lighting gouraud;
hold on
% Count and plot the separating edges.
[i,j] = find(A);
f = find(map(i) > map(j));
if length(f)
% xlabel( [int2str(length(f)) ' cut edges on ' int2str(nparts) ' partitions'],'visible','on');
if length(ecolor)
cut = sparse(i(f),j(f),1,n,n);
set(gplotg(cut,xy,'-'),'color',ecolor);
end;
else
% xlabel('0 cut edges','visible','on');
end;
% Plot each piece.
ncolor = 1;
for partnumber = parts;
c = pcolor(ncolor,:);
ncolor = rem(ncolor, size(pcolor,1)) + 1;
part = find(map == partnumber);
set(gplotg(A(part,part),xy(part,:),'-'),'color',c);
if n < 500,
if size(xy,2) == 2
set(plot(xy(part,1),xy(part,2),'o'),'color',c);
else
set(plot3(xy(part,1),xy(part,2),xy(part,3),'o'),'color',c);
end;
end;
end;
hold off

View file

@ -0,0 +1,70 @@
%##################################################################
% Determine if a graph is connected
% Idea by Ed Scheinerman, circa 2006, source: http://www.ams.jhu.edu/~ers/matgraph/
% routine: matgraph/@graph/isconnected.m
%
% INPUTS: adjacency matrix, nxn
% OUTPUTS: Boolean variable, 0 or 1
%
% Note: This function works only for undirected graphs.
% GB: last updated, Sep 23 2012
%##################################################################
function S = isConnected(adj)
if not(isempty(find(sum(adj)==0))); S = false; return; end
n = length(adj);
x = [1; zeros(n-1,1)]; % [1,0,...0] nx1 vector
while 1
y = x;
x = adj*x + x;
x = x>0;
if x==y; break; end
end
S = true;
if sum(x)<n; S = false;
end
end
% Alternative 1 ==========================================================
% If the algebraic connectivity is > 0 then the graph is connected
% a=algebraic_connectivity(adj);
% S = false; if a>0; S = true; end
% Alternative 2 ==========================================================
% Uses the fact that multiplying the adj matrix to itself k times give the
% number of ways to get from i to j in k steps. If the end of the
% multiplication in the sum of all matrices there are 0 entries then the
% graph is disconnected. Computationally intensive, but can be sped up by
% the fact that in practice the diameter is very short compared to n, so it
% will terminate in order of log(n)? steps.
% function S=isconnected(el):
%
% S=false;
%
% adj=edgeL2adj(el);
% n=numnodes(adj); % number of nodes
% adjn=zeros(n);
%
% adji=adj;
% for i=1:n
% adjn=adjn+adji;
% adji=adji*adj;
%
% if length(find(adjn==0))==0
% S=true;
% return
% end
% end
% Alternative 3 ==========================================================
% Find all connected components, if their number is 1, the graph is
% connected. Use find_conn_comp(adj).

View file

@ -0,0 +1,28 @@
function [G] = kNNSimGraph(Pts)
% Construct a k-nearest neighbors similarity graph
% Input
% k : # of neighbors
% Pts : coordinate list of the sample
%
% Output
% G : the kNN similarity matrix
n = length(Pts(:,1));
kn = ceil(2*log(n));
fprintf('kNN similarity graph\n');
for i = 1:n
s = repmat(Pts(i,:),n,1);
d = Pts - s;
% e = diag(d*d');
e = sum(d.^2,2);
[val,ind] = sort(e);
ind(1) = [];
nbrs = ind(1:kn);
G(i,nbrs) = 1;
G(nbrs,i) = 1;
end
end

View file

@ -0,0 +1,57 @@
function [D,x] = kmeans_mod(Y,K,n)
% Function to perform k-means clustering
% --------------------------------------
% Input
% Y: data matrix
% K: # of clusters
% n: number of points
% Output
% D: centroids
% x: assignment(indicator) vector
cand = unique(round(10000*Y)/10000,'rows');
c = datasample(cand,K,'Replace',false); % pick K random input pts as initial centroids
D = c;
x = zeros(size(Y,1),1);
D_old = inf*ones(size(D));
count = 1;
while norm(D - D_old) > 0.00001 & count < 500
D_old = D;
% Assign points to clusters
for i = 1:n
min = inf;
for k = 1:K
dist = norm(Y(i,:) - D(k,:));
if dist < min
min = dist;
x(i) = k;
end
end
end
% Update centroid locations
for k = 1:K
ind = find(x == k);
if length(ind) == 1
D(k,:) = Y(ind,:);
else
D(k,:) = mean(Y(ind,:));
end
end
count = count + 1;
end
for i = 1:n
min = inf;
for k = 1:K
dist = norm(Y(i,:) - D(k,:));
if dist < min
min = dist;
x(i) = k;
end
end
end
end

View file

@ -0,0 +1,51 @@
function A_sp = minSpanTree(A)
%MINSPANTREE Prim's minimal spanning tree algorithm
% @input A, NxN adjacency matrix
% @output A_sp, NxN adjacency matrix of minimum spanning tree
% Prim's alg idea:
% start at any node, find closest neighbor and mark edges
% for all remaining nodes, find closest to previous cluster, mark edge
% continue until no nodes remain
%
% INPUTS: graph defined by adjacency matrix, nxn
% OUTPUTS: matrix specifying minimum spanning tree (subgraph), nxn
%
% Other routines used: isConnected.m
% Updated: cleaned fprintf
% IB Last updated: 3/24/14
A_sp = [];
% check if graph is connected:
if not(isConnected(A)); fprintf('This graph is not connected. No spanning tree exists.\n'); return; end
n = length(A); % number of nodes
A_sp = sparse(n,n); % initialize tree
A(A==0)=inf; % set all zeros in the matrix to inf
conn_nodes = 1; % nodes part of the min-span-tree
rem_nodes = [2:n]; % remaining nodes
while ~isempty(rem_nodes)
[minlink]=min(min(A(conn_nodes,rem_nodes)));
ind=find(A(conn_nodes,rem_nodes)==minlink);
[ind_i,ind_j] = ind2sub([length(conn_nodes),length(rem_nodes)],ind(1));
i=conn_nodes(ind_i); j=rem_nodes(ind_j); % gets back to adj indices
A_sp(i,j)=A(i,j); A_sp(j,i)=A(j,i);
conn_nodes = [conn_nodes j]; %#ok<AGROW>
rem_nodes = setdiff(rem_nodes,j);
end
end

View file

@ -0,0 +1,20 @@
function B = setfilter(A)
% SETFILTER : Sort and remove duplicates.
%
% B = setfilter(A) returns a row vector with one occurrence
% of each different element of A, in sorted order.
%
% Based on code by Asko Huuskonen, Finnish Meteorological Institute,
% Asko.Huuskonen@fmi.fi, posted to comp.soft-sys.matlab.
% This version by John Gilbert, Xerox PARC, 27 Sep 1993
% Copyright (c) 1990-1996 by Xerox Corporation. All rights reserved.
% HELP COPYRIGHT for complete copyright and licensing notice.
if length(A) == 0
B = [];
return;
end;
B = sort(A(:));
B(find(diff(B)==0)) = [];
B = B.';

View file

@ -0,0 +1,19 @@
function [S] = similarityfunc(Pts, sigma)
% Create the similarity matrix S from the coordinate list of the input
% points
% dimosthenis.pasadakis@usi.ch
% ICS, USI.
if nargin < 2
% Choose \sigma ~ 2*log(n)
n = length(Pts(:,1));
sigma = log(n);
end
fprintf('----------------------------\n');
fprintf('Gaussian similarity function\n');
fprintf('----------------------------\n');
S = squareform(pdist(Pts));
S = exp(-S.^2 ./ (2*sigma^2));
end

95
mp4/assignment.sty Normal file
View file

@ -0,0 +1,95 @@
\usepackage{ifthen}
\usepackage[utf8]{inputenc}
\usepackage{graphics}
\usepackage{graphicx}
\usepackage{hyperref}
\pagestyle{plain}
\voffset -5mm
\oddsidemargin 0mm
\evensidemargin -11mm
\marginparwidth 2cm
\marginparsep 0pt
\topmargin 0mm
\headheight 0pt
\headsep 0pt
\topskip 0pt
\textheight 255mm
\textwidth 165mm
\newcommand{\duedate} {}
\newcommand{\setduedate}[1]{%
\renewcommand\duedate {Due date:~ #1}}
\newcommand\isassignment {false}
\newcommand{\setassignment}{\renewcommand\isassignment {true}}
\newcommand{\ifassignment}[1]{\ifthenelse{\boolean{\isassignment}}{#1}{}}
\newcommand{\ifnotassignment}[1]{\ifthenelse{\boolean{\isassignment}}{}{#1}}
\newcommand{\assignmentpolicy}{
\begin{table}[h]
\begin{center}
\scalebox{0.8} {%
\begin{tabular}{|p{0.02cm}p{16cm}|}
\hline
&\\
\multicolumn{2}{|c|}{\Large\textbf{Numerical Computing 2020 --- Submission Instructions}}\\
\multicolumn{2}{|c|}{\large\textbf{(Please, notice that following instructions are mandatory: }}\\
\multicolumn{2}{|c|}{\large\textbf{submissions that don't comply with, won't be considered)}}\\
&\\
\textbullet & Assignments must be submitted to \href{https://www.icorsi.ch/course/view.php?id=10018}{iCorsi} (i.e. in electronic format).\\
\textbullet & Provide both executable package and sources (e.g. C/C++ files, Matlab).
If you are using libraries, please add them in the file. Sources must be organized in directories called:\\
\multicolumn{2}{|c|}{\textit{Project\_number\_lastname\_firstname}}\\
& and the file must be called:\\
\multicolumn{2}{|c|}{\textit{project\_number\_lastname\_firstname.zip}}\\
\multicolumn{2}{|c|}{\textit{project\_number\_lastname\_firstname.pdf}}\\
\textbullet & The TAs will grade your project by reviewing your project write-up, and looking at the implementation
you attempted, and benchmarking your code's performance.\\
\textbullet & You are allowed to discuss all questions with anyone you like; however: (i) your submission must list anyone you discussed problems with and (ii) you must write up your submission independently.\\
\hline
\end{tabular}
}
\end{center}
\end{table}
}
\newcommand{\punkte}[1]{\hspace{1ex}\emph{\mdseries\hfill(#1~\ifcase#1{Points}\or{Points}\else{Points}\fi)}}
\newcommand\serieheader[6]{
\thispagestyle{empty}%
\begin{flushleft}
\includegraphics[width=0.4\textwidth]{usi_inf}
\end{flushleft}
\noindent%
{\large\ignorespaces{\textbf{#1}}\hspace{\fill}\ignorespaces{ \textbf{#2}}}\\ \\%
{\large\ignorespaces #3 \hspace{\fill}\ignorespaces #4}\\
\noindent%
\bigskip
\hrule\par\bigskip\noindent%
\bigskip {\ignorespaces {\Large{\textbf{#5}}}
\hspace{\fill}\ignorespaces \large \ifthenelse{\boolean{\isassignment}}{\duedate}{#6}}
\hrule\par\bigskip\noindent% \linebreak
}
\makeatletter
\def\enumerateMod{\ifnum \@enumdepth >3 \@toodeep\else
\advance\@enumdepth \@ne
\edef\@enumctr{enum\romannumeral\the\@enumdepth}\list
{\csname label\@enumctr\endcsname}{\usecounter
{\@enumctr}%%%? the following differs from "enumerate"
\topsep0pt%
\partopsep0pt%
\itemsep0pt%
\def\makelabel##1{\hss\llap{##1}}}\fi}
\let\endenumerateMod =\endlist
\makeatother
\usepackage{textcomp}

BIN
mp4/usi_inf.pdf Normal file

Binary file not shown.