mp5: done 1-3
This commit is contained in:
parent
4d9b7f859d
commit
71ae37534e
16 changed files with 640 additions and 0 deletions
Binary file not shown.
126
mp5/A_eig.tex
Normal file
126
mp5/A_eig.tex
Normal file
|
@ -0,0 +1,126 @@
|
|||
% This file was created by matlab2tikz.
|
||||
%
|
||||
\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
|
||||
%
|
||||
\begin{tikzpicture}
|
||||
|
||||
\begin{axis}[%
|
||||
width=6.028in,
|
||||
height=4.754in,
|
||||
at={(1.011in,0.642in)},
|
||||
scale only axis,
|
||||
xmin=0,
|
||||
xmax=100,
|
||||
ymode=log,
|
||||
ymin=0.001,
|
||||
ymax=10000,
|
||||
yminorticks=true,
|
||||
axis background/.style={fill=white},
|
||||
title style={font=\bfseries},
|
||||
title={Eigenvalues of A}
|
||||
]
|
||||
\addplot [color=mycolor1, forget plot]
|
||||
table[row sep=crcr]{%
|
||||
1 0.00183340367988759\\
|
||||
2 0.00453790786113484\\
|
||||
3 0.0107896856046935\\
|
||||
4 0.0211235851960644\\
|
||||
5 0.0305491923444261\\
|
||||
6 0.0424763662116699\\
|
||||
7 0.0652345604159706\\
|
||||
8 0.102757346585257\\
|
||||
9 0.153538421986227\\
|
||||
10 0.211241943436195\\
|
||||
11 0.252211715498981\\
|
||||
12 0.289989070850436\\
|
||||
13 0.351131851500607\\
|
||||
14 0.435706363023172\\
|
||||
15 0.475701188846017\\
|
||||
16 0.536773942313087\\
|
||||
17 0.570786145601508\\
|
||||
18 0.651735983378915\\
|
||||
19 0.727246558118914\\
|
||||
20 0.787465786548366\\
|
||||
21 0.876077658577838\\
|
||||
22 0.959634982712415\\
|
||||
23 1.11272341205416\\
|
||||
24 1.16964510997899\\
|
||||
25 1.19317301472187\\
|
||||
26 1.34288169306462\\
|
||||
27 1.48612799031325\\
|
||||
28 1.56948387062071\\
|
||||
29 1.78341752583741\\
|
||||
30 1.93501326653969\\
|
||||
31 1.94944936154279\\
|
||||
32 2.0834385818203\\
|
||||
33 2.25830482514161\\
|
||||
34 2.3104130395112\\
|
||||
35 2.44838431259137\\
|
||||
36 2.78327385790993\\
|
||||
37 2.90201594529841\\
|
||||
38 3.13205713047726\\
|
||||
39 3.25341826203778\\
|
||||
40 3.35818273116376\\
|
||||
41 3.70494882713741\\
|
||||
42 3.85238780788471\\
|
||||
43 3.9846975992715\\
|
||||
44 4.09652512284048\\
|
||||
45 4.26425186014381\\
|
||||
46 4.42615565949843\\
|
||||
47 4.64205273607693\\
|
||||
48 4.83516700026364\\
|
||||
49 4.89609731947842\\
|
||||
50 5.14541243767704\\
|
||||
51 5.47177991705298\\
|
||||
52 5.83426853647913\\
|
||||
53 6.24919735017955\\
|
||||
54 6.51069828517495\\
|
||||
55 6.76926716800134\\
|
||||
56 6.96357007137143\\
|
||||
57 7.22399026534903\\
|
||||
58 7.45959355109047\\
|
||||
59 7.6215883910995\\
|
||||
60 8.13211718148974\\
|
||||
61 8.2348761782867\\
|
||||
62 9.02938692612482\\
|
||||
63 9.26003297236477\\
|
||||
64 9.59443602091006\\
|
||||
65 9.78230272154912\\
|
||||
66 9.9397509124274\\
|
||||
67 10.8200374064158\\
|
||||
68 11.2239205229841\\
|
||||
69 11.5014660930885\\
|
||||
70 11.8095643578441\\
|
||||
71 11.9722770578147\\
|
||||
72 12.1797060122863\\
|
||||
73 12.3294752069053\\
|
||||
74 13.5048869251576\\
|
||||
75 13.6918740486823\\
|
||||
76 14.0726278232322\\
|
||||
77 14.6109572787373\\
|
||||
78 14.8717535190965\\
|
||||
79 15.5900717137855\\
|
||||
80 16.4268311711295\\
|
||||
81 16.8632629397018\\
|
||||
82 17.1804683132309\\
|
||||
83 17.5656109813257\\
|
||||
84 18.4405918720105\\
|
||||
85 18.9256543387976\\
|
||||
86 19.925816210275\\
|
||||
87 20.5420086066435\\
|
||||
88 20.8431836934263\\
|
||||
89 21.2272436238988\\
|
||||
90 22.028625968725\\
|
||||
91 22.7106432954137\\
|
||||
92 23.6099490290742\\
|
||||
93 24.9559178747221\\
|
||||
94 26.0355909133376\\
|
||||
95 26.4089094809298\\
|
||||
96 27.6083096450885\\
|
||||
97 28.4262392990311\\
|
||||
98 29.2220595414911\\
|
||||
99 30.9554105903231\\
|
||||
100 2511.69406680491\\
|
||||
};
|
||||
\end{axis}
|
||||
\end{tikzpicture}%
|
15
mp5/Makefile
Normal file
15
mp5/Makefile
Normal file
|
@ -0,0 +1,15 @@
|
|||
filename=template
|
||||
|
||||
pdf:
|
||||
pdflatex ${filename}
|
||||
#bibtex ${filename}
|
||||
pdflatex ${filename}
|
||||
pdflatex ${filename}
|
||||
make clean
|
||||
|
||||
read:
|
||||
evince ${filename}.pdf &
|
||||
|
||||
|
||||
clean:
|
||||
rm -f *.out *.log *.bbl *.blg *.aux ${filename}.log ${filename}.ps ${filename}.aux ${filename}.out ${filename}.dvi ${filename}.bbl ${filename}.blg
|
BIN
mp5/Project_5_Maggioni_Claudio.pdf
Normal file
BIN
mp5/Project_5_Maggioni_Claudio.pdf
Normal file
Binary file not shown.
126
mp5/Project_5_Maggioni_Claudio.tex
Normal file
126
mp5/Project_5_Maggioni_Claudio.tex
Normal file
|
@ -0,0 +1,126 @@
|
|||
\documentclass[unicode,11pt,a4paper,oneside,numbers=endperiod,openany]{scrartcl}
|
||||
|
||||
\usepackage{graphicx}
|
||||
\usepackage{subcaption}
|
||||
\usepackage{amsmath}
|
||||
\input{assignment.sty}
|
||||
\usepackage{pgfplots}
|
||||
\pgfplotsset{compat=newest}
|
||||
\usetikzlibrary{plotmarks}
|
||||
\usetikzlibrary{arrows.meta}
|
||||
\usepgfplotslibrary{patchplots}
|
||||
\usepackage{grffile}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{subcaption}
|
||||
\usepgfplotslibrary{external}
|
||||
\tikzexternalize
|
||||
|
||||
\begin{document}
|
||||
|
||||
\setassignment
|
||||
\setduedate{Wednesday, December 02, 2020, 11:59 PM}
|
||||
|
||||
\serieheader{Numerical Computing}{2020}{Student: Claudio Maggioni}{Discussed with: --}{Solution for Project 5}{}
|
||||
\newline
|
||||
|
||||
\assignmentpolicy
|
||||
|
||||
The purpose of this assignment is to gain insight on the theoretical and
|
||||
numerical properties of the Conjugate Gradient method. Here we use this method
|
||||
in an image processing application with the goal of deblur an image given the
|
||||
exact (noise-free) blurred image and the original transformation matrix. Note
|
||||
that the ``noise-free" simplification is essential for us to solve this problem
|
||||
in the scope of this assignment.
|
||||
|
||||
\section{General Questions [10 points]}
|
||||
\subsection{What is the size of the matrix $A$?}
|
||||
$A$ is an $n^2$ by $n^2$ matrix, where $n$ is the width and height in pixels
|
||||
of the image to transform.
|
||||
|
||||
\subsection{How many diagonals bands does $A$ have?}
|
||||
$A$ as $d^2$ diagonal bands, where $d$ is strictly an order of magnitude below
|
||||
$n$.
|
||||
|
||||
\subsection{What is the length of the vectorized blur image $b$?}
|
||||
$b$ is the row-vectorized form of the image pixel matrix, and thus has
|
||||
dimensions 1 by $n^2$.
|
||||
|
||||
\section{Properties of A [10 points]}
|
||||
\subsection{ If $A$ is not symmetric, how would this affect $\tilde{A}$?}
|
||||
If $A$ were not symmetric, then $\tilde{A}$ would not be positive definite since
|
||||
by definition $\tilde{A} = A A^T$, thus not satifying the assumptions taken when
|
||||
solving the system.
|
||||
|
||||
\subsection{ Explain why solving $Ax = b$ for $x$ is equivalent to
|
||||
minimizing $x^T A x - b^T x$ over $x$.}
|
||||
|
||||
First, we can say that:
|
||||
|
||||
\[f(x) = \frac12 x^T A x - b^T x = \frac12\langle Ax,x \rangle -
|
||||
\langle b,x \rangle\]
|
||||
|
||||
Then by taking the derivative of $f(x)$ w.r.t. $x$ we have (assuming $A$ is
|
||||
\textit{spd}, which it is):
|
||||
|
||||
\[f'(x) = \frac12 A^T x + \frac12Ax - b = Ax - b\]
|
||||
|
||||
which for $f'(x) = 0$ will be equivalent to solving $Ax = b$. By taking the
|
||||
second derivative we have:
|
||||
|
||||
\[f''(x) = A > 0\]
|
||||
|
||||
since $A$ is positive definite. Therefore, we can say that the absolute minima
|
||||
of $f(x)$ is the solution for $Ax = b$.
|
||||
|
||||
|
||||
\section{Conjugate Gradient [40 points]}
|
||||
\subsection{ Write a function for the conjugate gradient solver
|
||||
\texttt{[x,rvec]=myCG(A,b,x0,max\_itr,tol)}, where \texttt{x}
|
||||
and \texttt{rvec} are, respectively, the solution value and a
|
||||
vector containing the residual at every iteration.}
|
||||
|
||||
The implementation can be found in file \texttt{myCG.m} in the source directory.
|
||||
The test code for the function \texttt{myCG} can be found in the \texttt{test.m} file.
|
||||
|
||||
\subsection{ In order to validate your implementation, solve the system
|
||||
defined by \texttt{A\_test.mat} and \texttt{b\_test.mat}. Plot
|
||||
the convergence (residual vs iteration).}
|
||||
|
||||
The plot of the squared residual 2-norms over all iterations can be found in Figure
|
||||
\ref{fig:plot1}.
|
||||
|
||||
\begin{figure}[h]
|
||||
\input{test_semilogy}
|
||||
\caption{Semilog plot of the plot of the squared residual 2-norms over all iterations}\label{fig:plot1}
|
||||
\end{figure}
|
||||
|
||||
\subsection{ Plot the eigenvalues of \texttt{A\_test.mat} and comment on the
|
||||
condition number and convergence rate.}
|
||||
|
||||
The eigenvalues of A can be found in figure
|
||||
\ref{fig:plot2}. The condition number for matrix $A$ according to \texttt{rcond(...)} is $\approx 3.2720 \cdot 10^7$, which is very low without sitting in the denormalized range (i.e. $< \text{eps}$) and thus very good for the Conjugate Gradient algorithm.
|
||||
This well conditioning is also reflected in the eigenvalue plot, which shows a not so
|
||||
drastic increase of the first eigenvalues ordered in increasing order.
|
||||
|
||||
\begin{figure}[h]
|
||||
\input{A_eig}
|
||||
\caption{Semilog plot of the eigenvalues of A}\label{fig:plot2}
|
||||
\end{figure}
|
||||
|
||||
\section{Debluring problem [40 points]}
|
||||
\subsection{ Solve the debluring problem for the blurred image matrix
|
||||
\texttt{B.mat} and transformation matrix \texttt{A.mat} using
|
||||
your routine \texttt{myCG} and Matlab's preconditioned conjugate
|
||||
gradient \texttt{pcg}. As a preconditioner, use \texttt{ichol}
|
||||
to get the incomplete Cholesky factors and set routine type to
|
||||
\texttt{nofill} with $\alpha=0.01$ for the diagonal shift (see
|
||||
Matlab documentation). Solve the system with both solvers using
|
||||
$max\_iter=200$ $tol= 10^{-6}$. Plot the convergence (residual
|
||||
vs iteration) of each solver and display the original and final
|
||||
deblurred image.}
|
||||
\subsection{ When would \texttt{pcg} be worth the added computational cost?
|
||||
What about if you are debluring lots of images with the same
|
||||
blur operator?}
|
||||
|
||||
|
||||
\end{document}
|
BIN
mp5/Project_5_Maggioni_Claudio/blur_data/A.mat
Normal file
BIN
mp5/Project_5_Maggioni_Claudio/blur_data/A.mat
Normal file
Binary file not shown.
BIN
mp5/Project_5_Maggioni_Claudio/blur_data/B.mat
Normal file
BIN
mp5/Project_5_Maggioni_Claudio/blur_data/B.mat
Normal file
Binary file not shown.
29
mp5/Project_5_Maggioni_Claudio/code_template.m
Normal file
29
mp5/Project_5_Maggioni_Claudio/code_template.m
Normal file
|
@ -0,0 +1,29 @@
|
|||
close all;
|
||||
clear; clc;
|
||||
|
||||
%% Load Default Img Data
|
||||
load('blur_data/B.mat');
|
||||
B=double(B);
|
||||
|
||||
% Show Image
|
||||
figure
|
||||
im_l=min(min(B));
|
||||
im_u=max(max(B));
|
||||
imshow(B,[im_l,im_u])
|
||||
title('Blured Image')
|
||||
|
||||
% Vectorize the image (row by row)
|
||||
b=B';
|
||||
b=b(:);
|
||||
|
||||
|
||||
|
||||
%% Validate Test values
|
||||
load('test_data/A_test.mat');
|
||||
load('test_data/x_test_exact.mat');
|
||||
load('test_data/b_test.mat');
|
||||
|
||||
%res=||x^*-A^{-1}b||
|
||||
res=x_test_exact-inv(A_test)*b_test
|
||||
norm(res)
|
||||
%(Now do it with your CG and Matlab's PCG routine!!!)
|
26
mp5/Project_5_Maggioni_Claudio/myCG.m
Normal file
26
mp5/Project_5_Maggioni_Claudio/myCG.m
Normal file
|
@ -0,0 +1,26 @@
|
|||
function [x,rvec] = myCG(A, b, x0, max_itr, tol)
|
||||
x = x0;
|
||||
rvec = zeros(1,max_itr+1);
|
||||
r = b - A * x0;
|
||||
rvec(1) = norm(r, 2);
|
||||
d = r;
|
||||
delta_old = dot(r, r);
|
||||
|
||||
for i = 1:max_itr
|
||||
s = A * d;
|
||||
alpha = delta_old / dot(d, s);
|
||||
x = x + alpha * d;
|
||||
r = r - alpha * s;
|
||||
delta_new = dot(r, r);
|
||||
beta = delta_new / delta_old;
|
||||
d = r + beta * d;
|
||||
delta_old = delta_new;
|
||||
rvec(i + 1) = delta_new;
|
||||
|
||||
if delta_new < tol
|
||||
rvec = rvec(1:i+1);
|
||||
break
|
||||
end
|
||||
end
|
||||
end
|
||||
|
18
mp5/Project_5_Maggioni_Claudio/test.m
Normal file
18
mp5/Project_5_Maggioni_Claudio/test.m
Normal file
|
@ -0,0 +1,18 @@
|
|||
addpath /Users/maggicl/Git/matlab2tikz/src/;
|
||||
|
||||
load('test_data/A_test.mat');
|
||||
load('test_data/b_test.mat');
|
||||
load('test_data/x_test_exact.mat');
|
||||
|
||||
[xa, rveca] = myCG(A_test, b_test, b_test * 0, 1000, cutOff);
|
||||
|
||||
figure;
|
||||
semilogy(rveca);
|
||||
title("Residual vector squared 2-norm (log) over iterations");
|
||||
matlab2tikz('showInfo', false, '../test_semilogy.tex');
|
||||
|
||||
v = eig(A_test);
|
||||
figure;
|
||||
semilogy(v);
|
||||
title("Eigenvalues of A");
|
||||
matlab2tikz('showInfo', false, '../A_eig.tex');
|
BIN
mp5/Project_5_Maggioni_Claudio/test_data/A_test.mat
Normal file
BIN
mp5/Project_5_Maggioni_Claudio/test_data/A_test.mat
Normal file
Binary file not shown.
BIN
mp5/Project_5_Maggioni_Claudio/test_data/b_test.mat
Normal file
BIN
mp5/Project_5_Maggioni_Claudio/test_data/b_test.mat
Normal file
Binary file not shown.
BIN
mp5/Project_5_Maggioni_Claudio/test_data/x_test_exact.mat
Normal file
BIN
mp5/Project_5_Maggioni_Claudio/test_data/x_test_exact.mat
Normal file
Binary file not shown.
95
mp5/assignment.sty
Normal file
95
mp5/assignment.sty
Normal file
|
@ -0,0 +1,95 @@
|
|||
\usepackage{ifthen}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage{graphics}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\pagestyle{plain}
|
||||
\voffset -5mm
|
||||
\oddsidemargin 0mm
|
||||
\evensidemargin -11mm
|
||||
\marginparwidth 2cm
|
||||
\marginparsep 0pt
|
||||
\topmargin 0mm
|
||||
\headheight 0pt
|
||||
\headsep 0pt
|
||||
\topskip 0pt
|
||||
\textheight 255mm
|
||||
\textwidth 165mm
|
||||
|
||||
\newcommand{\duedate} {}
|
||||
\newcommand{\setduedate}[1]{%
|
||||
\renewcommand\duedate {Due date:~ #1}}
|
||||
\newcommand\isassignment {false}
|
||||
\newcommand{\setassignment}{\renewcommand\isassignment {true}}
|
||||
\newcommand{\ifassignment}[1]{\ifthenelse{\boolean{\isassignment}}{#1}{}}
|
||||
\newcommand{\ifnotassignment}[1]{\ifthenelse{\boolean{\isassignment}}{}{#1}}
|
||||
|
||||
\newcommand{\assignmentpolicy}{
|
||||
\begin{table}[h]
|
||||
\begin{center}
|
||||
\scalebox{0.8} {%
|
||||
\begin{tabular}{|p{0.02cm}p{16cm}|}
|
||||
\hline
|
||||
&\\
|
||||
\multicolumn{2}{|c|}{\Large\textbf{Numerical Computing 2020 --- Submission Instructions}}\\
|
||||
\multicolumn{2}{|c|}{\large\textbf{(Please, notice that following instructions are mandatory: }}\\
|
||||
\multicolumn{2}{|c|}{\large\textbf{submissions that don't comply with, won't be considered)}}\\
|
||||
&\\
|
||||
\textbullet & Assignments must be submitted to \href{https://www.icorsi.ch/course/view.php?id=10018}{iCorsi} (i.e. in electronic format).\\
|
||||
\textbullet & Provide both executable package and sources (e.g. C/C++ files, Matlab).
|
||||
If you are using libraries, please add them in the file. Sources must be organized in directories called:\\
|
||||
\multicolumn{2}{|c|}{\textit{Project\_number\_lastname\_firstname}}\\
|
||||
& and the file must be called:\\
|
||||
\multicolumn{2}{|c|}{\textit{project\_number\_lastname\_firstname.zip}}\\
|
||||
\multicolumn{2}{|c|}{\textit{project\_number\_lastname\_firstname.pdf}}\\
|
||||
\textbullet & The TAs will grade your project by reviewing your project write-up, and looking at the implementation
|
||||
you attempted, and benchmarking your code's performance.\\
|
||||
|
||||
\textbullet & You are allowed to discuss all questions with anyone you like; however: (i) your submission must list anyone you discussed problems with and (ii) you must write up your submission independently.\\
|
||||
\hline
|
||||
\end{tabular}
|
||||
}
|
||||
\end{center}
|
||||
\end{table}
|
||||
}
|
||||
\newcommand{\punkte}[1]{\hspace{1ex}\emph{\mdseries\hfill(#1~\ifcase#1{Points}\or{Points}\else{Points}\fi)}}
|
||||
|
||||
|
||||
\newcommand\serieheader[6]{
|
||||
\thispagestyle{empty}%
|
||||
\begin{flushleft}
|
||||
\includegraphics[width=0.4\textwidth]{usi_inf}
|
||||
\end{flushleft}
|
||||
\noindent%
|
||||
{\large\ignorespaces{\textbf{#1}}\hspace{\fill}\ignorespaces{ \textbf{#2}}}\\ \\%
|
||||
{\large\ignorespaces #3 \hspace{\fill}\ignorespaces #4}\\
|
||||
\noindent%
|
||||
\bigskip
|
||||
\hrule\par\bigskip\noindent%
|
||||
\bigskip {\ignorespaces {\Large{\textbf{#5}}}
|
||||
\hspace{\fill}\ignorespaces \large \ifthenelse{\boolean{\isassignment}}{\duedate}{#6}}
|
||||
\hrule\par\bigskip\noindent% \linebreak
|
||||
}
|
||||
|
||||
\makeatletter
|
||||
\def\enumerateMod{\ifnum \@enumdepth >3 \@toodeep\else
|
||||
\advance\@enumdepth \@ne
|
||||
\edef\@enumctr{enum\romannumeral\the\@enumdepth}\list
|
||||
{\csname label\@enumctr\endcsname}{\usecounter
|
||||
{\@enumctr}%%%? the following differs from "enumerate"
|
||||
\topsep0pt%
|
||||
\partopsep0pt%
|
||||
\itemsep0pt%
|
||||
\def\makelabel##1{\hss\llap{##1}}}\fi}
|
||||
\let\endenumerateMod =\endlist
|
||||
\makeatother
|
||||
|
||||
|
||||
|
||||
|
||||
\usepackage{textcomp}
|
||||
|
||||
|
||||
|
||||
|
205
mp5/test_semilogy.tex
Normal file
205
mp5/test_semilogy.tex
Normal file
|
@ -0,0 +1,205 @@
|
|||
% This file was created by matlab2tikz.
|
||||
%
|
||||
\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
|
||||
%
|
||||
\begin{tikzpicture}
|
||||
|
||||
\begin{axis}[%
|
||||
width=6.028in,
|
||||
height=4.754in,
|
||||
at={(1.011in,0.642in)},
|
||||
scale only axis,
|
||||
xmin=0,
|
||||
xmax=180,
|
||||
ymode=log,
|
||||
ymin=1e-12,
|
||||
ymax=1000000,
|
||||
yminorticks=true,
|
||||
axis background/.style={fill=white},
|
||||
title style={font=\bfseries},
|
||||
title={Residual vector squared 2-norm (log) over iterations}
|
||||
]
|
||||
\addplot [color=mycolor1, forget plot]
|
||||
table[row sep=crcr]{%
|
||||
1 11909.9916990842\\
|
||||
2 1215.89010103615\\
|
||||
3 119.561506273628\\
|
||||
4 25.7035634544525\\
|
||||
5 10.5611870908368\\
|
||||
6 4.9270658032822\\
|
||||
7 2.13962279549106\\
|
||||
8 123.990459337534\\
|
||||
9 1.23020970291512\\
|
||||
10 0.726292742104297\\
|
||||
11 0.437655877749282\\
|
||||
12 0.260873707832738\\
|
||||
13 0.17072420219991\\
|
||||
14 0.101340305340657\\
|
||||
15 0.189833128810975\\
|
||||
16 0.131825297283515\\
|
||||
17 0.0572076044770027\\
|
||||
18 0.039668263144492\\
|
||||
19 0.0319287317681079\\
|
||||
20 0.0195740744402844\\
|
||||
21 0.0149039165591494\\
|
||||
22 0.0123032827360602\\
|
||||
23 0.712044976614692\\
|
||||
24 0.00995641116934014\\
|
||||
25 0.00893611054884436\\
|
||||
26 0.00630098046101872\\
|
||||
27 0.00529335587330463\\
|
||||
28 0.00589902032947632\\
|
||||
29 0.00588515046013994\\
|
||||
30 0.406172316998164\\
|
||||
31 0.0040950751378787\\
|
||||
32 0.00373404399719963\\
|
||||
33 0.0035997277309428\\
|
||||
34 0.00299194637307639\\
|
||||
35 0.00177328859853697\\
|
||||
36 0.00129725288116854\\
|
||||
37 0.049535388437175\\
|
||||
38 0.0011091440769831\\
|
||||
39 0.00118263501318397\\
|
||||
40 0.000966559105586302\\
|
||||
41 0.000718169185559145\\
|
||||
42 0.000724441141532492\\
|
||||
43 0.000768917036778476\\
|
||||
44 0.00269020183225918\\
|
||||
45 0.000570706808899611\\
|
||||
46 0.000831736774154204\\
|
||||
47 0.000649300990333462\\
|
||||
48 0.000310381139613716\\
|
||||
49 0.000235403925330503\\
|
||||
50 0.000340608947493281\\
|
||||
51 0.001318689210481\\
|
||||
52 0.000205980081464339\\
|
||||
53 0.000279777304655239\\
|
||||
54 0.000109664496511463\\
|
||||
55 0.000141033277838556\\
|
||||
56 0.000112654872491888\\
|
||||
57 0.000165756718289282\\
|
||||
58 0.00084800673419117\\
|
||||
59 0.000130276460617259\\
|
||||
60 0.000203034526747493\\
|
||||
61 0.000176255235921362\\
|
||||
62 9.4197961691087e-05\\
|
||||
63 8.20523976696223e-05\\
|
||||
64 0.00370668271425266\\
|
||||
65 9.93383601592671e-05\\
|
||||
66 0.000153079242536576\\
|
||||
67 9.14044749794555e-05\\
|
||||
68 5.72233807063173e-05\\
|
||||
69 6.34922495601101e-05\\
|
||||
70 7.27636976386079e-05\\
|
||||
71 0.00225428493244681\\
|
||||
72 0.000113799191067991\\
|
||||
73 5.35440047147865e-05\\
|
||||
74 8.41355153412546e-05\\
|
||||
75 8.48518650076496e-05\\
|
||||
76 6.22215998223378e-05\\
|
||||
77 0.000817207214704047\\
|
||||
78 0.000111352409122667\\
|
||||
79 4.21172150194178e-05\\
|
||||
80 2.87734653228315e-05\\
|
||||
81 4.10050601226006e-05\\
|
||||
82 3.24394526517843e-05\\
|
||||
83 4.16294986387063e-05\\
|
||||
84 0.00214569803932431\\
|
||||
85 8.55723713819309e-05\\
|
||||
86 3.32557658527889e-05\\
|
||||
87 2.52240728364592e-05\\
|
||||
88 6.2097593050376e-05\\
|
||||
89 2.18185972524218e-05\\
|
||||
90 0.000295303841112173\\
|
||||
91 4.87144579957892e-05\\
|
||||
92 2.8215056148989e-05\\
|
||||
93 2.35361887050575e-05\\
|
||||
94 2.75041794828811e-05\\
|
||||
95 5.06188272864469e-05\\
|
||||
96 2.42061490399217e-05\\
|
||||
97 0.00027580878447057\\
|
||||
98 2.74664478340053e-05\\
|
||||
99 3.50733084924626e-05\\
|
||||
100 3.1778479688316e-05\\
|
||||
101 2.92589989035591e-05\\
|
||||
102 0.000129072395418128\\
|
||||
103 0.0047343379748716\\
|
||||
104 4.09472473509763e-05\\
|
||||
105 4.10312409025682e-05\\
|
||||
106 4.76401831045035e-05\\
|
||||
107 4.27117411441813e-05\\
|
||||
108 0.000157541717376013\\
|
||||
109 0.000168844397829638\\
|
||||
110 7.4065189988145e-05\\
|
||||
111 0.00022062018323934\\
|
||||
112 7.88776820700891e-05\\
|
||||
113 0.000116991745030062\\
|
||||
114 9.06776322106616e-05\\
|
||||
115 4.3360143026987e-05\\
|
||||
116 0.00329403333122333\\
|
||||
117 4.76599036875217e-05\\
|
||||
118 4.10940764030938e-05\\
|
||||
119 3.58177666192589e-05\\
|
||||
120 7.89625389146185e-06\\
|
||||
121 1.61751062518811e-05\\
|
||||
122 0.000441952575307103\\
|
||||
123 2.4016614151962e-05\\
|
||||
124 2.73115201713094e-05\\
|
||||
125 3.22102681494731e-05\\
|
||||
126 2.08196860675751e-05\\
|
||||
127 3.39310585133428e-05\\
|
||||
128 2.35747264136633e-05\\
|
||||
129 0.000318952227696151\\
|
||||
130 9.37353712503354e-05\\
|
||||
131 4.2670279781618e-05\\
|
||||
132 8.46751510649503e-05\\
|
||||
133 2.41046768091548e-05\\
|
||||
134 0.000118220396031136\\
|
||||
135 0.00984156577501441\\
|
||||
136 7.3484752201193e-05\\
|
||||
137 4.51598504488994e-05\\
|
||||
138 4.51515273101713e-05\\
|
||||
139 1.16508810374033e-05\\
|
||||
140 1.03229247762991e-05\\
|
||||
141 0.000629284559580057\\
|
||||
142 2.10831113801501e-06\\
|
||||
143 8.64626377047462e-06\\
|
||||
144 1.90060956957351e-06\\
|
||||
145 2.9904838823846e-06\\
|
||||
146 1.1698091976711e-05\\
|
||||
147 0.00157994086647156\\
|
||||
148 3.90577499999355e-06\\
|
||||
149 3.63123271261456e-05\\
|
||||
150 1.13464425483349e-05\\
|
||||
151 6.23630758043014e-06\\
|
||||
152 5.33727229652419e-05\\
|
||||
153 0.00766964489351792\\
|
||||
154 4.40019782836122e-05\\
|
||||
155 4.91424078393586e-06\\
|
||||
156 5.23015596899946e-06\\
|
||||
157 1.59109137910169e-05\\
|
||||
158 2.44921817021047e-06\\
|
||||
159 8.92395259274082e-05\\
|
||||
160 1.65115695649721e-06\\
|
||||
161 2.09460062061473e-06\\
|
||||
162 5.05915189772462e-07\\
|
||||
163 1.32841240174248e-07\\
|
||||
164 1.28360359603615e-06\\
|
||||
165 1.43607180361307e-05\\
|
||||
166 5.04094734598852e-06\\
|
||||
167 7.41197749055341e-06\\
|
||||
168 5.04948498688418e-07\\
|
||||
169 1.54446803267932e-08\\
|
||||
170 1.81444161747323e-07\\
|
||||
171 8.78831793802036e-08\\
|
||||
172 1.53613965535421e-06\\
|
||||
173 2.81415884074516e-06\\
|
||||
174 4.43530815074645e-07\\
|
||||
175 2.7224336876613e-08\\
|
||||
176 1.43297134609307e-06\\
|
||||
177 1.62527199539552e-09\\
|
||||
178 2.50972491576067e-10\\
|
||||
179 1.74075823612926e-11\\
|
||||
};
|
||||
\end{axis}
|
||||
\end{tikzpicture}%
|
BIN
mp5/usi_inf.pdf
Normal file
BIN
mp5/usi_inf.pdf
Normal file
Binary file not shown.
Reference in a new issue